Point-based Rendering
(Just a Quick View...)

CS535

Daniel Aliaga



Point-Based Rendering

* QOptions:
— Ray tracing
— Polygon rendering
— Point-based rendering

* Instead of drawing triangles, just draw lots of dots (or small circles, or
something)

 What are the advantages of this?
* What problems do you need to solve?

(b) ()
Points Polygons — same number of primitives as (a) Polygons — same number of vertices as (a)
Same rendering time as (a) Twice the rendering time of (a)



¢

QSplat

(by Rusinkiewicz and Levoy)

* Primary goal is interactive rendering of very
large point-data sets

* Built for the Digital Michelangelo Project



QSplat Sphere Tree

(a) Bounding Sphere Hierarchy

(b) File Layour for
Circled Nodes at Left

1
1
1
I
1
1
1
- . . i !
I'ree Width of 1
Pasition and radius Structure Marmal Mormal Cone Orprional Calor
(c) Node Layout | ] ] 1
13 hits 3 bits 14 hits 2 his

16 hits

Figure 2: QSplat file and node layout. (a) The tree is stored in breadth-first order (i.e., the order given by the red arrows). (b) The link from parent to child nodes
is established by a single pointer from a group of parents to the first child. The pointer is not present if all of the “parent” siblings are leaf nodes. All pointers are 32
bits. (c) A single quantized node occupies 48 bits (32 without color).



¢

Primitive Shape

e Several options
— Square (OpenGL “point”)
— Circle (triangle fan or texture mapped square)
— Gaussian (have to do two-pass)

* Can squash splats depending on viewing angle

— Sometimes causes holes at silhouettes, can be
fixed by bounding squash factor



Figure 3: Choices for splat shape. We show a scene rendered using squares, circles, and Gaussians as splat kernels. In the top row, each image uses the same recursion
threshold of 20 pixels. Relative to squares, circles take roughly twice as long to render, and Gaussians take approximately four times as long. The Gaussians, however,
exhibit significantly less aliasing. In the bottom row, the threshold for each image is adjusted to produce the same rendering time in each case. According to this
criterion, the square kernels appear to offer the highest quality.



Primitive Silhouettes




Imitives

15-pixel cutoff

10-pixel cutoff

259,975 points
215 ms

(-
al
=
Q
L




Many Primitives

S-pixel cutoff
1,017,149 points
722 ms

1-pixel cutoff
14,835,967 points
8308 ms




&

Frameless Rendering

Continuously update pixels in randomized order
Reconstruct image with filtering based on recent pixels

Many guises: frameless rendering, the render cache, radiosity
interpolants

Think raytracing:
— As things change from frame to frame, cast as many rays as you have
time for, and keep other rays from previous frame
Hard parts are knowing which samples to keep/discard, and
filtering

“Adaptive Frameless Rendering”
— Dayal et al. 2005
— Video



https://luebke.us/publications/pdf/afr.egsr.pdf
https://luebke.us/publications/afr.egsr.submitted.small.mp4

Surfels

(by Pfister, Zwicker, van Baar and Gross)

 We've seen pixels, voxels, texels, and now
surfels

— You can probably guess what it means

* This paper focuses on the issues of:
— Sampling other representations into surfels
— Storing surfels




Sampling Objects

The final pixel resolution

determines the sampling density

— Want at least one sample per pixel

— Typically go higher

LDI 2

Cast rays through the object in an

axis aligned direction on a regular

m LD 1 surfels

grid spacing

e D] 2 surfels

— Do this for each of three axis align

directions

Store pre-filtered texture colors at
the points

— Project the surfel into texture space
and filter to get a single color

LD 1

Object Space Texture Space /.

e

o]}

Figure 4: Texture prefiltering with tangent disks.



Storing Surfels

e Store 3 layered depth images (LDI), one for
each axis-aligned orthographic viewing
direction
— Call the result a Layered Depth Cube (LDC)

— A layered depth image (LDI) stores multiple depths
per pixel, with color for each depth

* Build an octree hierarchy by down-sampling
high-res LDIs
— Nodes in the tree are called blocks

e Can also reduce a LDC to a single LDI (but with
some error)



&

“Splatting” and Reconstruction

Ohbject Space z-Buffer
R

5 Approximate
/' Bounding Box

S b

Figure 11: Tilted checker plane. Reconstruction filter: a) Nearest neighbor: b) Gaussian filter ¢) Supersampling.



	Point-based Rendering �(Just a Quick View…)
	Point-Based Rendering
	QSplat�(by Rusinkiewicz and Levoy)
	QSplat Sphere Tree
	Primitive Shape
	Primitive Shape
	Primitive Silhouettes
	Few Primitives
	Many Primitives
	Frameless Rendering
	Surfels�(by Pfister, Zwicker, van Baar and Gross)
	Sampling Objects
	Storing Surfels
	“Splatting” and Reconstruction

