
Point-based Rendering 
(Just a Quick View…)

CS535

Daniel Aliaga



Point-Based Rendering
• Options:

– Ray tracing
– Polygon rendering
– Point-based rendering

• Instead of drawing triangles, just draw lots of dots (or small circles, or 
something)

• What are the advantages of this?
• What problems do you need to solve?



QSplat
(by Rusinkiewicz and Levoy)

• Primary goal is interactive rendering of very 
large point-data sets

• Built for the Digital Michelangelo Project



QSplat Sphere Tree



Primitive Shape

• Several options
– Square (OpenGL “point”)
– Circle (triangle fan or texture mapped square)
– Gaussian (have to do two-pass)

• Can squash splats depending on viewing angle
– Sometimes causes holes at silhouettes, can be 

fixed by bounding squash factor



Primitive Shape



Primitive Silhouettes



Few Primitives



Many Primitives



Frameless Rendering

• Continuously update pixels in randomized order
• Reconstruct image with filtering based on recent pixels
• Many guises: frameless rendering, the render cache, radiosity

interpolants
• Think raytracing:

– As things change from frame to frame, cast as many rays as you have 
time for, and keep other rays from previous frame

• Hard parts are knowing which samples to keep/discard, and 
filtering

• “Adaptive Frameless Rendering”
– Dayal et al. 2005
– Video

https://luebke.us/publications/pdf/afr.egsr.pdf
https://luebke.us/publications/afr.egsr.submitted.small.mp4


Surfels
(by Pfister, Zwicker, van Baar and Gross)

• We’ve seen pixels, voxels, texels, and now 
surfels
– You can probably guess what it means

• This paper focuses on the issues of:
– Sampling other representations into surfels
– Storing surfels
– Rendering with surfels



Sampling Objects
• The final pixel resolution 

determines the sampling density
– Want at least one sample per pixel
– Typically go higher

• Cast rays through the object in an 
axis aligned direction on a regular 
grid spacing
– Do this for each of three axis align 

directions
• Store pre-filtered texture colors at 

the points
– Project the surfel into texture space 

and filter to get a single color



Storing Surfels

• Store 3 layered depth images (LDI), one for 
each axis-aligned orthographic viewing 
direction
– Call the result a Layered Depth Cube (LDC)
– A layered depth image (LDI) stores multiple depths 

per pixel, with color for each depth
• Build an octree hierarchy by down-sampling 

high-res LDIs
– Nodes in the tree are called blocks

• Can also reduce a LDC to a single LDI (but with 
some error)



“Splatting” and Reconstruction


	Point-based Rendering �(Just a Quick View…)
	Point-Based Rendering
	QSplat�(by Rusinkiewicz and Levoy)
	QSplat Sphere Tree
	Primitive Shape
	Primitive Shape
	Primitive Silhouettes
	Few Primitives
	Many Primitives
	Frameless Rendering
	Surfels�(by Pfister, Zwicker, van Baar and Gross)
	Sampling Objects
	Storing Surfels
	“Splatting” and Reconstruction

