
CS535
Interactive Computer Graphics

Fall 2024

Daniel G. Aliaga
Department of Computer Science

Purdue University

Who am I?
• Daniel G. Aliaga

http://www.cs.purdue.edu/~aliaga and aliaga@cs.purdue.edu
CS faculty doing Graphics
Doctorate in Graphics
Master’s in Graphics
Bachelors in Graphics
High School Degree doing graphics/robots/science
1980 (TRS80 Model I)

Then: http://www.youtube.com/watch?v=3yuqdC8Id48)
http://thinkingscifi.files.wordpress.com/2012/12/starwars-graphics.png

Now: http://www.youtube.com/watch?v=QAEkuVgt6Aw

• CGVLAB
http://www.cs.purdue.edu/cgvlab

http://www.cs.purdue.edu/%7Ealiaga
mailto:aliaga@cs.purdue.edu
http://en.wikipedia.org/wiki/TRS-80
http://www.youtube.com/watch?v=3yuqdC8Id48
http://thinkingscifi.files.wordpress.com/2012/12/starwars-graphics.png
http://www.youtube.com/watch?v=QAEkuVgt6Aw
http://www.cs.purdue.edu/cgvlab

Who am I?

• CGVLAB: www.cs.purdue.edu/cgvlab
• Home page: www.cs.purdue.edu/homes/aliaga

• Research Computer Graphics/Computer Vision:
– Urban Modeling: 3D acquisition, forward and inverse

procedural modeling, urban design and planning
– Projector-Camera Systems: spatially-augmented reality,

appearance editing, radiometric compensation
– 3D digital fabrication: genuinity detection, tamper

detection, multiple appearance generation

http://www.cs.purdue.edu/cgvlab
http://www.cs.purdue.edu/homes/aliaga

Who are you?

Syllabus

• History
• Graphics Pipeline
• Ray-tracing and Point Rendering
• Polygon Rendering
• Shading and Illumination
(midterm)
• Image-based Rendering
• Generating Modeling
• Style and Appearance
(final project, final exam)

Preview: CS635

• Neural Networks, CNNs, GANs
• More 3D Deep Learning
• Surface Reconstruction
• Probabilistic Graphical Models
• 3D Reconstruction Passive and Active
• Fancy Cameras and Displays
• Perception Issues
• Generative Modeling

Graphics, OpenGL, GLUT, GLUI, Qt,
CUDA, OpenCL, OpenCV, and more!

CS535 Fall 2024

Daniel G. Aliaga
Department of Computer Science

Purdue University

History
• 1950: MIT Whirlwind (CRT)
• 1955: Sage, Radar with CRT and

light pen
• 1958: Willy Higinbotham “Tennis”
• 1960: MIT “Spacewar” on DEC-

PDP-1
• 1963: Ivan Sutherland’s

“Sketchpad” (CAD)
• 1968: Tektronix storage tube
• 1968: Evans & Sutherland’s flight

simulators
• 1968: Douglas Engelbart:

computer mouse
• 1969: ACM SIGGRAPH

• 1970: Xerox GUI
• 1971: Gouraud shading
• 1974: Z-buffer
• 1975: Phong Model
• 1979: Eurographics
• 1981: Apollo Workstation, PC
• 1982: Whitted: Ray tracing
• 1982: SGI
• 1984: X Window System
• 1984: 1st SGI Workstation
• ->1995: SGI dominance
• ->2003: PC dominance
• Today: programmable graphics

hardware (again)

Applications

• Training
• Education
• Computer-aided design (CAD)
• Scientific Visualization
• E-commerce
• Computer art
• Entertainment

Reprise: Graphics

• First graphics visual image:
– Ben Laposky used an oscilloscope in 1950s

(note: one of my undergrad senior
projects was an oscilloscope based
graphics engine)

Whirlwind Computer @ MIT

• Video display of real-time data:

Ivan Sutherland (1963) - SKETCHPAD

• pop-up menus
• constraint-based drawing
• hierarchical modeling

IKONAS and TAAC

• Nick England and more…
• (see other slides)

Display hardware
• vector displays

– 1963 – modified oscilloscope
– 1974 – Evans and Sutherland Picture System

• raster displays
– 1975 – Evans and Sutherland frame buffer
– 1980s – cheap frame buffers → bit-mapped personal computers
– 1990s – liquid-crystal displays → laptops
– 2000s – micro-mirror projectors → digital cinema
– 2010s – high dynamic range displays?

• other
– stereo, head-mounted displays
– autostereoscopic displays

Input hardware

• 2D
– light pen, tablet, mouse, joystick, track ball, touch

panel, etc.
– 1970s & 80s - CCD analog image sensor + frame

grabber

Input hardware

• 2D
– light pen, tablet, mouse, joystick, track ball, touch

panel, etc.
– 1970s & 80s - CCD analog image sensor + frame

grabber

Input hardware

• 2D
– light pen, tablet, mouse, joystick, track ball, touch

panel, etc.
– 1970s & 80s - CCD analog image sensor + frame

grabber
– 1990s & 2000’s - CMOS digital sensor + in-camera

processing

High Dynamic Range Imaging
• negative film = 130:1 (7 stops)
• paper prints = 46:1
• combine multiple exposures = 250,000:1 (18 stops)

[Nayar00]

→

[Debevec97]

Input hardware
• 2D

– light pen, tablet, mouse, joystick, track ball, touch panel, etc.
– 1970s & 80s - CCD analog image sensor + frame grabber
– 1990s & 2000’s - CMOS digital sensor + in-camera processing

 → high-dynamic range (HDR) imaging
• 3D

– 1980s - 3D trackers
– 1990s - active rangefinders

• 4D and higher
– multiple cameras
– multi-arm gantries

Rendering

• 1960s - the visibility problem
– Roberts (1963), Appel (1967) - hidden-line

algorithms
– Warnock (1969), Watkins (1970) - hidden-surface

algorithms
– Sutherland (1974) - visibility = sorting

• 1960s - the visibility problem
– Roberts (1963), Appel (1967) - hidden-line algorithms
– Warnock (1969), Watkins (1970) - hidden-surface

algorithms
– Sutherland (1974) - visibility = sorting

• 1970s - raster graphics
– Gouraud (1971) - diffuse lighting
– Phong (1974) - specular lighting
– Blinn (1974) - curved surfaces, texture
– Crow (1977) - anti-aliasing

• 1960s - the visibility problem
– Roberts (1963), Appel (1967) - hidden-line algorithms
– Warnock (1969), Watkins (1970) - hidden-surface

algorithms
– Sutherland (1974) - visibility = sorting

• 1970s - raster graphics
– Gouraud (1971) - diffuse lighting
– Phong (1974) - specular lighting
– Blinn (1974) - curved surfaces, texture
– Catmull (1974) - Z-buffer hidden-surface algorithm
– Crow (1977) - anti-aliasing

• early 1980s - global illumination
– Whitted (1980) - ray tracing
– Goral, Torrance et al. (1984), Cohen (1985) -

radiosity
– Kajiya (1986) - the rendering equation

• early 1980s - global illumination
– Whitted (1980) - ray tracing
– Goral, Torrance et al. (1984), Cohen (1985) - radiosity
– Kajiya (1986) - the rendering equation

• late 1980s - photorealism
– Cook (1984) - shade trees
– Perlin (1985) - shading languages
– Hanrahan and Lawson (1990) - RenderMan

• early 1990s - non-photorealistic rendering
– Drebin et al. (1988), Levoy (1988) - volume

rendering
– Haeberli (1990) - impressionistic paint programs
– Salesin et al. (1994-) - automatic pen-and-ink

illustration
– Meier (1996) - painterly rendering

• early 1990s - non-photorealistic rendering
– Drebin et al. (1988), Levoy (1988) - volume

rendering
– Haeberli (1990) - impressionistic paint programs
– Salesin et al. (1994-) - automatic pen-and-ink

illustration
– Meier (1996) - painterly rendering

Research Conferences…

• Papers at
http://kesen.realtimerendering.com/

• SIGGRAPH, SIGGRAPH Asia, Eurographics, I3D
• CVPR, ICCV, ECCV…
• NeurIPS, AAAI, ICLR, ICML…
• IEEE Visualization

http://kesen.realtimerendering.com/

Computer Graphics Pipeline
• How do we create a rendering such as this?

Computer Graphics Pipeline
• Design the scene (technical drawing in “wireframe”)

Computer Graphics Pipeline
• Apply perspective transformations to the scene geometry for a virtual

camera

Computer Graphics Pipeline
• Hidden lines removed and colors added

Computer Graphics Pipeline
• Geometric primitives filled with constant color

Computer Graphics Pipeline
• View-independent lighting model added

Computer Graphics Pipeline
• View-dependent lighting model added

Computer Graphics Pipeline
• Texture mapping: pictures are wrapped around objects

Computer Graphics Pipeline
• Reflections, shadows, and bumpy surfaces

Computer Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection Transformation

Scan Conversion

Geometric Primitives

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

But…

• Now, we have deep learning…

• Or, did we always?

Deep Visual Computing

• Since the beginning, it turns out visual
computing and machine learning have been
deeply connected

• Do you know why?

• Lets see… (get it: lets “see”)

A long time ago in a computer far, far
inferior to your phone, it all began…

 -Daniel Aliaga, August 25, 2020

ENIAC

• Completed in 1945
• Was called a “Giant Brain”
• Cost $6.3M of today’s dollars

• However, computers then lacked a key
prerequisite for intelligence:
they could barely remember…they only executed a
few commands

Logic Theorist (1956)

• A program designed to mimic the problem solving
skills of a human

• From 1957-1974, AI flourished and failed and
flourished…

• In 1968, A. Clarke and S. Kubrik said “by the year
2001 we will have machines with intelligence that
matches or exceeded humans’s”

• In 1970, Marvin Minsky (MIT) said that in 3-8 years
“we will have a machine with the general intelligence
of an average human being”

AI Timeline

1980s

• Expert systems became popular: dedicated systems

• “Deep learning techniques” was a coined phrase but
with diverse meanings…

• I was around then, and even a paid undergraduate
researcher in a major AI lab
- our job was to create a robot that could be programmed
remotely and could execute algorithms for navigating and
deciding how to avoid obstacles (e.g., walls and boxes)

(Single Layer) Perceptron

• The Perceptron: A Probabilistic Model for
Information Storage and Organization in the
Brain, F. Rosenblatt, Psychological Review,
65(6), 1958.

• Model based on the human visual system

Perceptron

Perceptron

Perceptrons

• Book by M. Minsky and S. Papert (1969)

• Was actually “An Introduction to
Computational Geometry” – thus visual as
well

• Commented on the limited ability of
perceptrons and on the difficulty in training
multi-layer perceptrons

Try this…

https://playground.tensorflow.
org/

- First try something linear
- Then try something more

complex…

https://playground.tensorflow.org/
https://playground.tensorflow.org/

Deep Learning Timeline

Reprise: Computer Vision

• In 1959, Russell Kirsch and colleagues
developed an image scanner: transform an
image into a grid of numbers so that a
machine can understand it!

• One of the first scanned images:
 (176x176 pixels)

1982

• David Marr, British neuroscientists, published
influential paper
“Vision: A computational investigation into the human
representation and processing of visual information”

Among many things, he gave the insight that vision is
hierarchical (i.e., primal sketch, 2.5D, and then 3D
recognition)

(now at CVPR, the Marr Prize exists)

1999

• David Lowe’s work “Object Recognition from
Local Scale-Invariant Features” indicated a
shift to feature-based visual object-
recognition (instead of full 3D models as Marr
proposed)

– Scale-Invariant Feature Transform (SIFT)

– and many subsequent derivatives

2010

• ImageNet Large Scale Visual Recognition
Competition (ILSVRC) runs annually

– 2010/2011: error rates were around 26% (using
Lowe-style approaches)

– 2012: the beginning of a new beginning – AlexNet
– reduced errors to 16%!

AlexNet

• University of Toronto created a CNN model
(AlexNet) that changed everything (Krizhevsky
et al. 2012)

Just a note: 1980s

• Kunihiko Fukushima developed Neocognitron
for visual pattern recognition which included
several convolutional layers whose (typically
rectangular) receptive fields had weight
vectors (known as filters)

• This was perhaps the earliest deep and
convolutional network

Just a note: 1989

• Yann LeCun applied backpropagation to
Fukushima’s network and with other
improvements released LeNet-5 – quite
similar to today’s CNNs

ILSVRC (2011-2017)

ILSVRC (2010-2017)

Deep Learning in Computer
Graphics

• Like in computer vision, since 2010’ish deep
learning has revolutionized computational
imaging and computational photography

• However, hand-crafted methods have
significantly improved other domains such as
geometry processing, rendering and
animation, video processing, and physical
simulations

Linear Algebra

• Why do we need it?
– Modeling transformation

• Move “objects” into place relative to a world origin

– Viewing transformation
• Move “objects” into place relative to camera

– Perspective transformation
• Project “objects” onto image plane

Transformations

• Most popular transformations in graphics
– Translation
– Rotation
– Scale
– Projection

• In order to use a single matrix for all, we use
homogeneous coordinates…

Transformations

Transformations

Perspective projection

Representations

• How are the objects described in a computer?
– Points (or vertices)
– Lines
– Triangles
– Polygons
– Curved surfaces, etc.
– Functions

Representations

• What information is needed per geometric
primitive?
– Color
– Normal
– Material properties (e.g. textures…)

Texture Mapping

Lighting and Shading

…shadows?

Advanced Topics: Ray tracing

Advanced Topics: Global Illumination

OpenGL

• Software interface to graphics hardware
• ~150 distinct commands
• Hardware-independent and widely supported

– To achieve this, no windowing tasks are included
• GLU (Graphics Library Utilities)

– Provides some higher-level modeling features
such as curved surfaces, objects, etc.

• Open Inventor (old)
– A higher-level object-oriented software package

OpenGL Online

• Programming Guide v1.1 (“Red book”)
– http://www.glprogramming.com/red/

• Reference Manual v1.1 (“Blue book”)
– http://www.glprogramming.com/blue/

• Current version is >4.0

http://www.glprogramming.com/red/
http://www.glprogramming.com/blue/

OpenGL

• Rendering parameters
– Lighting, shading, lots of little details…

• Texture information
– Texture data, mapping strategies

• Matrix transformations
– Projection
– Model view
– (Texture)
– (Color)

Simple OpenGL Program
{
 <Initialize OpenGL state>

 <Load and define textures>

 <Specify lights and shading parameters>

 <Load projection matrix>

 For each frame

 <Load model view matrix>
 <Draw primitives>

 End frame
}

Simple Program
#include <GL/gl.h>
main()
{
 InitializeAWindowPlease();
 glMatrixMode(GL_PROJECTION);
 glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslate3f(1.0, 1.0, 1.0):
 glBegin(GL_POLYGON);
 glVertex3f (0.25, 0.25, 0.0);
 glVertex3f (0.75, 0.25, 0.0);
 glVertex3f (0.75, 0.75, 0.0);
 glVertex3f (0.25, 0.75, 0.0);
 glEnd();
 glFlush();
 UpdateTheWindowAndCheckForEvents();
}

(Free)GLUT

• = Graphics Library Utility Toolkit
– Adds functionality such as windowing operations to

OpenGL

• Event-based callback interface
– Display callback
– Resize callback
– Idle callback
– Keyboard callback
– Mouse movement callback
– Mouse button callback

Simple OpenGL + GLUT Program
#include <…>

DisplayCallback()
{
 <Clear window>
 <Load Projection matrix>
 <Load Modelview matrix>
 <Draw primitives>
 (<Swap buffers>)
}

IdleCallback()
{
 <Do some computations>
 <Maybe force a window refresh>
}

KeyCallback()
{
 <Handle key presses>
}

KeyCallback()
{
 <Handle key presses>
}

MouseMovementCallback
{
 <Handle mouse movement>
}

MouseButtonsCallback
{
 <Handle mouse buttons>
}

Main()
{
 <Initialize GLUT and callbacks>
 <Create a window>
 <Initialize OpenGL state>

 <Enter main event loop>
}

Simple OpenGL + GLUT Program
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);
 glLoadIdentity ();
 gluLookAt (0, 0, 5, 0, 0, 0, 0, 1, 0);
 glScalef (1.0, 2.0, 1.0);
 glutWireCube (1.0);
 glFlush ();
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 glFrustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
 glMatrixMode (GL_MODELVIEW);
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMainLoop();
 return 0;
}

Example Program with Lighting
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)
{
 GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat mat_shininess[] = { 50.0 };
 GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_SMOOTH);

 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
 glLightfv(GL_LIGHT0, GL_POSITION, light_position);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_DEPTH_TEST);
}
void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glutSolidSphere (1.0, 20, 16);
 glFlush ();
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 glOrtho (-1.5, 1.5, -1.5*(GLfloat)h/(GLfloat)w,
 1.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
 else
 glOrtho (-1.5*(GLfloat)w/(GLfloat)h,
 1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB |

GLUT_DEPTH);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMainLoop();
 return 0;
}

Simple OpenGL + GLUT Program

GLUI
• = Graphics Library User Interface

GLUI
• = Graphics Library User Interface

GLUI
• = Graphics Library User Interface

Qt

• Qt is a cross-platform application and UI
framework with APIs for C++ programming
and Qt Quick for rapid UI creation

http://qt.nokia.com/products/

Alternatives graphics pipeline?

• Traditional pipeline…ok
• Parallel pipeline

– Cluster of PCs?
– Cluster of PS3?
– What must be coordinated? What changes? What are

the bottlenecks?

– Sort-first vs. Sort-last pipeline
• PixelFlow
• Several hybrid designs

What can you do with a graphics
pipeline?

• Uhm…graphics

What can you do with a graphics
pipeline?

• Uhm…graphics
• Paperweight?

What can you do with a graphics
pipeline?

• Uhm…graphics
• Paperweight?

• How about large number crunching tasks?
• How about general (parallelizable) tasks?

CUDA and OpenCL

• NVIDIA defined “CUDA” (new)
– Compute Unified Device Architecture
– http://www.nvidia.com/object/cuda_home.html#

• Khrono’s group defined “OpenCL” (newer)
– Open Standard for Parallel Programming of

Heterogeneous Systems
– http://www.khronos.org/opencl/

http://www.nvidia.com/object/cuda_home.html
http://www.khronos.org/opencl/

CUDA Example

• Rotate a 2D image by an angle

– On the CPU (PC)
• simple-tex.pdf

– On the GPU (graphics card)
• simple-tex-kernel.pdf

OpenCL Example

• Compute a Fast Fourier Transform

– On the CPU (PC)
• cl-cpu.pdf

– On the GPU (graphics card)
• cl-gpu.pdf

GLSL

• OpenGL Shading Language
– Specification
– Quick reference
– Example:

• phong.pix
• phong.vrt

OpenCV

• A library for computer-vision related software
• Derived from research work and high-

performance code from Intel
• http://opencv.willowgarage.com/wiki/

– e.g., find fundamental matrix

http://opencv.willowgarage.com/wiki/

	CS535�Interactive Computer Graphics
	Who am I?
	Who am I?
	Who are you?
	Syllabus
	Preview: CS635
	Graphics, OpenGL, GLUT, GLUI, Qt, CUDA, OpenCL, OpenCV, and more!
	History
	Applications
	Reprise: Graphics
	Whirlwind Computer @ MIT
	Ivan Sutherland (1963) - SKETCHPAD
	IKONAS and TAAC
	Display hardware
	Input hardware
	Input hardware
	Input hardware
	 High Dynamic Range Imaging
	Input hardware
	Rendering
	
	
	
	
	
	
	Research Conferences…
	Computer Graphics Pipeline
	Computer Graphics Pipeline
	Computer Graphics Pipeline
	Computer Graphics Pipeline
	Computer Graphics Pipeline
	Computer Graphics Pipeline
	Computer Graphics Pipeline
	Computer Graphics Pipeline
	Computer Graphics Pipeline
	Computer Graphics Pipeline
	But…
	Deep Visual Computing
	Slide Number 40
	ENIAC
	Logic Theorist (1956)
	AI Timeline
	1980s
	(Single Layer) Perceptron
	Perceptron
	Perceptron
	Perceptrons
	Try this…
	Deep Learning Timeline
	Reprise: Computer Vision
	1982
	1999
	2010
	AlexNet
	Just a note: 1980s
	Just a note: 1989
	ILSVRC (2011-2017)
	ILSVRC (2010-2017)
	Deep Learning in Computer Graphics
	Linear Algebra
	Transformations
	Transformations
	Transformations
	Representations
	Representations
	Texture Mapping
	Lighting and Shading
	Advanced Topics: Ray tracing
	Advanced Topics: Global Illumination
	OpenGL
	OpenGL Online
	OpenGL
	Simple OpenGL Program
	Simple Program
	(Free)GLUT
	Simple OpenGL + GLUT Program
	Simple OpenGL + GLUT Program
	Example Program with Lighting
	Simple OpenGL + GLUT Program
	GLUI
	GLUI
	GLUI
	Qt
	Alternatives graphics pipeline?
	What can you do with a graphics pipeline?
	What can you do with a graphics pipeline?
	What can you do with a graphics pipeline?
	CUDA and OpenCL
	CUDA Example
	OpenCL Example
	GLSL
	OpenCV

