

Image Morphing, Warping, and Resizing

CS535

Daniel G. Aliaga Department of Computer Science Purdue University

Topics

- Image morphing (2D)
 - A "hack"
- View morphing (2D+)
 - Planar warp using homography
- Image warping (3D)
 - Full 3D warp

- Given
 - left image
 - right image
- Create intermediate images
 - simulates camera movement

Related Work

- Panoramas ([Chen95/QuicktimeVR], etc)
 - user can look in any direction at few given locations but camera translations are *not* allowed...

- Image morphing (2D)
- View morphing (2D+)
- Image warping (3D)

 Identify correspondences between input/output image

 Produce a sequence of images that allow a smooth transition from the input image to the output image

1. Correspondences

2. Linear interpolation

$$P_k = (1 - \frac{k}{n})P_0 + \frac{k}{n}P_n$$

Image morphing is not shape preserving

- Image morphing (2D)
- View morphing (2D+)
- Image warping (3D)

View Morphing

View Morphing

- Shape preserving morph
- Three step algorithm
 - Prewarp first and last images to parallel views
 - Image morph between prewarped images
 - Postwarp to interpolated view

Step 1: prewarp to parallel views

- Parallel views
 - same image plane
 - image plane parallel to segment connecting the two centers of projection
 - Prewarp
 - compute parallel views I_{0p} , I_{np}
 - rotate I₀ and I_n to parallel views
 - prewarp correspondence is
 (P₀, P_n) -> (P_{op}, P_{np})

Step 2: morph parallel images

- Shape preserving
- Use prewarped correspondences
- Interpolate C_k from C₀ C_n

Step 3: postwarp image

- Postwarp morphed image
 - create intermediate view
 - C_k is known
 - interpolate view direction and tilt
 - rotate morphed image to intermediate view

View morphing

View morphing

 View morphing is shape preserving

View Morphing Examples

• Using computer vision/stereo reconstruction techniques

Image Transformations

• Intuitively, how do you compute the matrix M by which to transform P_0 to P_{0p} ?

 A geometric relationship between input (u,v) and output pixels (x,y)

– Forward mapping: (x,y) = (X(u,v), Y(u,v))

- Inverse mapping: (u,v) = (U(x,y), V(x,y))

Image Transformations

General matrix form is

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

and operates in the "homogeneous coordinate system".

Affine Transformations

• Matrix form is

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

and accommodates translations, rotations, scale, and shear.

How many unknowns? How to create matrix?

Affine Transformations

 Transformation can be inferred from correspondences; e.g.,

$$\begin{bmatrix} u_i \\ v_i \\ w_i \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}$$

• Given ≥3 correspondences can solve for T

• Matrix form is

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- and it accommodates foreshortening of distant line and convergence of lines to a vanishing point;
- also, straight lines are maintained but not their mutual angular relationships, and
- only parallel lines parallel to the projection plane remain parallel

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- How many unknowns?
- How many correspondences are needed?

Perspective/Projective Transformation

• Solve

$$\begin{pmatrix} u_0 \ v_0 \ 1 \ 0 \ 0 \ 0 \ -u_0 x_0 - v_0 x_0 \\ u_1 \ v_1 \ 1 \ 0 \ 0 \ 0 \ -u_1 x_1 - v_1 x_1 \\ u_2 \ v_2 \ 1 \ 0 \ 0 \ 0 \ -u_2 x_2 - v_2 x_2 \\ u_3 \ v_3 \ 1 \ 0 \ 0 \ 0 \ -u_3 x_3 - v_3 x_3 \\ 0 \ 0 \ 0 \ u_0 \ v_0 \ 1 \ -u_0 y_0 - v_0 y_0 \\ 0 \ 0 \ 0 \ u_1 \ v_1 \ 1 \ -u_1 y_1 - v_1 y_1 \\ 0 \ 0 \ 0 \ u_2 \ v_2 \ 1 \ -u_2 y_2 - v_2 y_2 \\ 0 \ 0 \ 0 \ u_3 \ v_3 \ 1 \ -u_3 y_3 - v_3 y_3 \end{pmatrix} A = b$$
 where *A* is the unknown

where A is the vector of unknown coefficients a_{ij}

- Image morphing (2D)
- View morphing (2D+)
- Image warping (3D)

3D Image Warping

- Goal: "warp" the pixels of the image so that they appear in the correct place for a new viewpoint
- Advantage:
 - Don't need a geometric model of the object/environment
 - Can be done in time proportional to screen size and (mostly) independent of object/environment complexity
- Disadvantage:
 - Limited resolution
 - Excessive warping reveals several visual artifacts (see examples)

3D Image Warping Equations

McMillan & Bishop Warping Equation: $X_2 = \delta(X_1) P_2^{-1} (C_1 - C_2) + P_2^{-1} P_1 X_1$

Move pixels based on distance to eye ~Texture mapping

 Per-pixel distance values are used to warp pixels to their correct location for the current eye position

3D Image Warping Equations

Some pictures courtesy of SIGGRAPH '99 course notes (Leonard McMillan)

3D Image Warping Equations

3D Image Warping Equations

 Images enhanced with per-pixel depth [McMillan95]

3D Image Warping Equations

 $P = C_1 + (c_1 + u_1 a_1 + v_1 b_1) w_1$ $w_1 = \frac{C_1 P}{C_1 P_1}$

- $1/w_1$ also called generalized disparity
- another notation $\delta(u_1, v_1)$

3D Image Warping Equations

3D Image Warping Equations⁴

$$u_{2} = \frac{w_{11} + w_{12} \cdot u_{1} + w_{13} \cdot v_{1} + w_{14} \cdot \delta(u_{1}, v_{1})}{w_{31} + w_{32} \cdot u_{1} + w_{33} \cdot v_{1} + w_{34} \cdot \delta(u_{1}, v_{1})}$$
$$v_{2} = \frac{w_{21} + w_{22} \cdot u_{1} + w_{23} \cdot v_{1} + w_{24} \cdot \delta(u_{1}, v_{1})}{w_{31} + w_{32} \cdot u_{1} + w_{33} \cdot v_{1} + w_{34} \cdot \delta(u_{1}, v_{1})}$$

- DeltaSphere
 - Lars Nyland et al.

Disocclusions

• Disocclusions (or exposure events) occur when unsampled surfaces become visible...

What can we do?

Disocclusions

• Bilinear patches: fill in the areas

What else?

Rendering Order

/ The warping equation determines where points go...

... but that is not sufficient

Occlusion Compatible Rendering Order

- Remember epipolar geometry?
- Project the new viewpoint onto the original image and divide the image into 1, 2 or 4 "sheets"

Occlusion Compatible Rendering Order

• A raster scan of each sheet produces a back-to-front ordering of warped pixels

- 2. Preserve the important *content* and *structures*
- 3. Limit *artifacts* created

Traditional Methods

Scaling Cropping

Scaling introduces distortions
Cropping removes important parts

Many Existing Resizing Methods

Seam Carving Method

- "Seam Carving for Content-Aware Image Resizing,"
 S. Avidan and A. Shamir
- In Photoshop called "content aware scaling"
- Main idea: Remove the least noticeable pixels
 - How? Define an "energy function" that measures how perceptually noticeable each pixel is
- Remove the pixels with "low energy" and avoid removing pixels with "high energy"
 - How? Define a criterion for picking which pixels to remove

Possible Energy Functions

- Edgeness
 - Gradient magnitude

$$e_1(\mathbf{I}) = \left|\frac{\partial}{\partial x}\mathbf{I}\right| + \left|\frac{\partial}{\partial y}\mathbf{I}\right|$$

- Entropy
- HOG (Histogram of Gradient)
- Saliency
- .

Caviet: No single energy function performs well on all images

Pixel Removal Criteria

• **Optimal**: remove the *k* pixels with lowest energy

Energy image

• Output image no longer rectangular

Input image

Output image

Pixel Removal Criteria

- **Pixel**: Remove *k* pixels with lowest energy in *each* row
- No visual coherence between adjacent rows

Pixel Removal Criteria

- Column: Remove whole column with lowest energy
- Frequently introduces artifacts

Seam Definition

Vertical Seam

is an 8-connected path of pixels in an *n* x *m* image from top to bottom, containing one, and only one, pixel in each row of the image:

$$\mathbf{s}^{\mathbf{x}} = \{s_i^x\}_{i=1}^n = \{(x(i), i)\}_{i=1}^n, \text{ s.t. } \forall i, |x(i) - x(i-1)| \le 1$$

Seam Energy

• Energy of a Seam

$$E(\mathbf{s}) = E(\mathbf{I}_{\mathbf{s}}) = \sum_{i=1}^{n} e(\mathbf{I}(s_i))$$

• Minimum Energy Seam

$$s^* = \min_{\mathbf{s}} E(\mathbf{s}) = \min_{\mathbf{s}} \sum_{i=1}^n e(\mathbf{I}(s_i))$$

• Seam: Remove the vertical curve of lowest energy

How to Efficiently Compute Best Seater

- Use **Dynamic Programming** to find lowest energy seam in linear time
- 1. Forward Pass (top row to bottom row for finding vertical seam)
 - Define M(i, j) = total energy of path ending at (i, j)
 - $-\mathsf{M}(1,j)=e(1,j)$
 - $\mathsf{M}(i, j) = e(i, j) + \min(\mathsf{M}(i-1, j-1), \mathsf{M}(i-1, j), \mathsf{M}(i-1, j+1))$
 - $B(i, j) = \operatorname{argmin}_{k=j-1, j, j+1} M(i-1, k)$
 - Find minimum value in last row: $\min_{j} M(n, j)$
- 2. Backward Pass (bottom row to top row)
 - Trace back path from pixel in bottom row with min value to top row using B

Forward Pass

e = red numberM = black numB = green arroy

Backward Pass

Credit: Wikipedia

Seams

Seams over energy image

Seams over input image

Shrink Image in 1 Dimension

- Change the image from size n × m to n × m' – assume m' < m
- Remove *m*-*m*′ = *c* seams successively

Seam Carving

- Change the image from size n × m to n × m' – assume m' < m
- Remove *m*-*m*′ = *c* seams successively

Scaling

Shrink Image in Both Dimensions

- Change the image from size n × m to n' × m' – assume m' < m and n' < n
- What is the best order for seam carving?
 - Remove vertical seams first?
 - Horizontal seams first?
 - Alternate between the two?

Optimal Seam Ordering

• Solve optimization problem:

$$\min_{\mathbf{s}^{\mathbf{x}},\mathbf{s}^{\mathbf{y}},\boldsymbol{\alpha}} \sum_{i=1}^{k} E(\boldsymbol{\alpha}_{i} \mathbf{s}^{\mathbf{x}}_{\mathbf{i}} + (1 - \boldsymbol{\alpha}_{i}) \mathbf{s}^{\mathbf{y}}_{\mathbf{i}})$$

where k = r+c, r = (m-m'), c = (n-n') and α_i is a parameter that determines if at step *i* we remove a horizontal or vertical seam: $\alpha \in \{0,1\}$
Enlarging Images

- Method 1: Compute the optimal vertical (horizontal) seam s in image and duplicate the pixels in s by averaging them with their left and right neighbors (top and bottom in the horizontal case)
- Often will choose the *same* seam at each iteration, producing noticeable stretching artifact

 Method 2: To enlarge width by k, compute top k vertical seams (for removal) and duplicate each of them

Content Amplification

- Scale the image; this will scale everything, "content" as well as "non-content"
- Shrink the scaled-image using seam carving, which will (hopefully) carve out the non-content part

Object Removal

- User marks the target object to be removed
- Force seams to pass through marked pixels
- Seams are removed from the image until all marked pixels are gone
- To obtain the original image size, use seam insertion

Object Removal

• One shoe removed (and image enlarged to original size)

Object Removal

 Object marking to prevent unwanted results: mark regions where seams must *not* pass

Multi-Size Images

- Methods mentioned so far are not real-time
- We calculate best seam, remove it, calculate the next seam based on new image, etc.
- For real-time resizing
 - Pre-compute removal order for every pixel in image
 - Compute Index map, V, of size n × m that encodes, for each pixel, the index of the seam that removed it, i.e., V(i, j) = t means pixel (i, j) was removed by the tth seam removal iteration

Multi-Size Images

- Horizontal Index map (H)
- Vertical Index map (V)
- To get an image of width *m*'
 - need to remove *m*-*m*' pixels from each row
 - concatenate, in each row, all pixels with seam index greater than or equal to m-m'
- Same for changing the height

Seam Index Maps

Input

Н

V

Blue seams are removed first, red seams removed last

Failures

- Too much content
- No space for seam to avoid content

Video Resizing

- Resizing each frame independently is bad
- Instead, find 2D surface in 3D x-y-t video volume

What next?

What makes a picture memorable? ⁴

Most memorable images: (top-left is most memorable...)

[Khosla et al. 2015] http://memorability.csail.mit.edu/

Al-Based Emotion Recognition

- <u>https://viso.ai/deep-learning/visual-emotion-ai-recognition/</u>
- <u>https://openaccess.thecvf.com/content/CVPR2023W/LatinX/papers/de_Lima_Costa_High-</u>
 <u>Level_Context_Representation_for_Emotion_Recognition_in_Images_CVPRW_2023_paper.pdf</u>

EmoGen: Emotional Image Content Generation with Text-to-Image Diffusion Models

<u>https://openaccess.thecvf.com/content/CVPR2024/papers/Yang_EmoGen_Emotional_Image_Content_Generation_with_Text-to-Image_Diffusion_Models_CVPR_2024_paper.pdf</u>

Figure 1. Emotional Image Content Generation (EICG). Given an emotion category, our network produces images that exhibit unambiguous meanings (*semantic-clear*), reflect the intended emotion (*emotion-faithful*) and incorporate varied semantics (*semantic-diverse*).

and More...

Mood Determination: urgency, emergency?

