

Physically Based Simulations (on the GPU)

CS535

Daniel G. Aliaga Department of Computer Science Purdue University

Simulating the world

 Floating point arithmetic on GPUs and their speed enable us to simulate a wide variety of phenomena using PDEs

Some Basics

- Operators (on images/lattices)
- Diffusion
- Bouyancy

Operators

• Given an image:

- Gradient (vector)

$$\nabla f(x,y) = \frac{\partial f}{\partial x}\hat{x} + \frac{\partial f}{\partial y}\hat{y}$$

Laplacian (scalar)

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Discrete Laplacian

•
$$\nabla^2 f(x, y) =$$

 $f(x - 1, y) + f(x + 1, y) +$
 $f(x, y - 1) + f(x, y + 1) -$
 $4f(x, y)$

• Matrix form = ??

Discrete Laplacian

•
$$\nabla^2 f(x, y) =$$

 $f(x - 1, y) + f(x + 1, y) +$
 $f(x, y - 1) + f(x, y + 1) -$
 $4f(x, y)$

• Matrix form =

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Heat Equation

 $\frac{\partial f}{\partial t} = \nabla^2 f$

Diffusion Equation [Weisstein 1999]

 $f(x,y)' = f(x,y) + \frac{c_d}{4} \nabla^2 f(x,y)$

where c_d is the coefficient of diffusion...

(Anisotropic) Diffusion

(a) Original Image

(c) Time = 10

(b) Time = 5

(d) Time = 30

Buoyancy

- Used in convection, cloud formations, etc.
- Given a temperature state T:
 - a vertical buoyancy velocity is 'upwards' if a node is hotter than its neighbors' and
 - a vertical buoyancy velocity is 'downwards' if a node is cooler than its neighbors

Buoyancy

$$v(x,y)' = v(x,y) + \frac{c_b}{2}(2f(x,y) - f(x+1,y) - f(x-1,y))$$

where c_b is the buoyancy strength

where $\rho(f) = \tanh(\alpha(f - f_c))$ (an approx. of density relative to temperature f) and σ is buoyancy strength and α and f_c are constants

Euler Method (for ODE)

• Given:

$$y'(t) = f(t, y(t))$$
 with $y(t_0) = y_0$
• Do:

$$y_{n+1} = y_n + hf(t_n, y_n)$$

Classical Runge Kutta Method

• Given:

$$y'(t) = f(t, y(t))$$
 with $y(t_0) = y_0$
Do:

$$y_{n+1} = y_n + h/6(k_1 + 2k_2 + 2k_3 + k_4)$$

 $t_{n+1} = t_n + h$

where $k_1 = f(t_n, y_n),$ $k_2 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_1),$ $k_3 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_2),$ $k_4 = f(t_n + h, y_n + hk_3).$

Example: (Water) Boiling

- Based on [Harris et al. 2002]
- State = Temperature
- Three operations:
 Diffusion, buoyancy, & latent heat
- 3D Simulation
 - Stack of 2D texture slices

Turing: Morphogenesis and Reaction-Diffusion (1952)

"Alan Turing in 1952 describing the way in which non-uniformity (stripes, spots, spirals, etc.) may arise naturally out of a homogeneous, uniform state. The theory (which can be called a <u>reaction-diffusion</u> theory of <u>morphogenesis</u>), has served as a basic model in <u>theoretical biology</u>, and is seen by some as the very beginning of <u>chaos theory</u>."

$$\frac{\partial U}{\partial t} = D_U \nabla^2 U - k(UV - 16)$$
$$\frac{\partial V}{\partial t} = D_V \nabla^2 V + k(UV - 12 - V)$$

Gray-Scott Reaction-Diffusion

- State = two scalar chemical concentrations
- Simple:
 - just Diffusion and Reaction ops

$$\begin{aligned} \frac{\partial U}{\partial t} &= D_u \nabla^2 U - UV^2 + F(1 - U), \\ \frac{\partial V}{\partial t} &= D_v \nabla^2 V + UV^2 - (F + k)V \end{aligned}$$

U, *V* are chemical concentrations, *F*, *k*, D_u , D_v are constants

Some research...

 <u>http://www.cc.gatech.edu/~turk/reaction_diff</u> <u>usion/reaction_diffusion.html</u>

Navier-Stokes Equations

• Describe flow of an incompressible fluid

Fluid Dynamics

- Solution of Navier-Stokes flow eqs.
 - Stable for arbitrary time steps (=fast!)
 - [Stam 1999], [Fedkiw et al. 2001]

Can be implemented on latest GPUs
 — Quite a bit more complex than R-D or boiling

• See "Fast Fluid Dynamics Simulation on the GPU" (Harris, GPU Gems, 2004)

Fluid Simulations

Thermodynamics

- Temperature affected by
 - Heat sources
 - Advection
 - Latent heat released / absorbed during condensation / evaporation
- ∆ temperature = advection + latent heat release

+ temperature input

Cloud Dynamics

- 3 components
 - 7 unknowns
- Fluid dynamics
 - Motion of the air
- Thermodynamics
 - Temperature changes
- Water continuity
 - Evaporation, condensation

Velocity: $\mathbf{u} = (u, v, w)$

Pressure: *p*

Potential temperature: θ (see dissertation)

Water vapor mixing ratio: q_v

Liquid water mixing ratio: q_c

Cloud Dynamics

Wave Equation

- Remember heat equation:
 - Rate of change of value proportional to Laplacian
- Wave equation:
 - Rate of change of the rate of change is also proportional to the Laplacian

Wave Equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$$

where u models the displacement and c is the propagation speed

Water Simulation: Wave Equation

U = value, V = rate of change

$$\frac{\partial U}{\partial t} = \frac{b}{k} + d\nabla^2 U$$

$$\frac{\partial V}{\partial t} = k \nabla^2 U$$

Water Simulation: Wave Equation

• Demo...

 $Asin(\omega x + t)$

 $A_1 sin(\omega_1 x + t_1) + A_2 sin(\omega_2 x + t_2) + \cdots$

• Using sine-wave summations:

$$H(x, y, t) = \sum A_i sin(D_i \cdot (x, y)\omega_i + t\phi_i)$$

[use H as height or a pixel intensity]

• Pixel values over time are: P(x, y, t) = (x, y, H(x, y, t))

(here, pixel normals are computed as well for reflections)

Water: Surface Normals

• Use binormal and tangent:

$$B(x, y, t) = \left(\frac{dx}{dx}, \frac{dy}{dx}, \frac{dH(x, y, t)}{dx}\right) = (1, 0, \frac{dH(x, y, t)}{dx})$$
$$T(x, y, t) = \dots = \left(0, 1, \frac{dH(x, y, t)}{dy}\right)$$

• Normal is:

 $N(x, y, t) = B \times T$ $N(x, y, t) = \left(-\frac{dH(x, y, t)}{dx}, -\frac{dH(x, y, t)}{dy}, 1\right)$

 These waves also change the x, y of the wave imitating how points at top of wave are squished together and points at bottom are separated

Water Simulation:
Gerstner Waves

$$P(x, y, t) = \begin{bmatrix} x + \sum Q_i A_i D_i \cdot x \cos(\omega_i D_i \cdot (x, y) + \phi_i t) \\ y + \sum Q_i A_i D_i \cdot y \cos(\omega_i D_i \cdot (x, y) + \phi_i t) \\ \sum A_i \sin(\omega_i D_i \cdot (x, y) + \phi_i t) \end{bmatrix}$$

where Q_i =sharpness

Video

<u>https://www.youtube.com/watch?v=lqPa389v</u>
 <u>i4s</u>

Simulation Algorithm

advect
accelerate
water/thermo
divergence
jacobi
jacobi
jacobi
jacobi
•
jacobi
u-grad(p)

- Advect quantities
 - Similar to [Stam, 1999]
- Compute and apply accelerations
 - Buoyancy
- Compute condensation, evaporation, and temperature changes
- Enforce momentum conservation
 - Otherwise velocity dissipates, loses "swirls"
 - Projection step of "Stable Fluids" [Stam, 1999]

Simulation Algorithm

- Most steps are simple
 - Most use one fragment program, one pass
 - Programs come directly from equations
- Tricky parts:
 - Staggered grid discretization
 - Stable Fluids projection step
 - Boundary conditions
 - 3D Simulation

Flat 3D Textures

Corresponding Flat 3D Texture

Flat 3D Textures

- Advantages
 - One texture update per operation
 - Better use of GPU parallelism
 - Non-power-of-two Textures
 - Quick simulation preview
- Disadvantage
 - Must compute texture offsets

