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Simulating the world @

* Floating point arithmetic on GPUs and their
speed enable us to simulate a wide variety of
phenomena using PDEs
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Some Basics

* Operators (on images/lattices)
* Diffusion
* Bouyancy



Operators

Given an image:

— Gradient (vector)

of ~ , 0f A~

— Laplacian (scalar)
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Discrete Laplacian

* V2 f(x,y) =

f(x—l,y) __f(x_l_l)y)_l_
f(X,y— 1) --f(x,y+ 1) _
4f (x,y)

e Matrix form = 7?7?
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Discrete Laplacian

* V2 f(x,y) =
f(X— 1,)7) __f(x_l_ 11y) +
f(X,y— 1) --f(x,y+ 1) _

4f (x, y)
e Matrix form =
0O 1 O
1 —4 1
0O 1 O
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Heat Equation

aof
a1



Diffusion Equation
[Weisstein 1999]

FOy) = f69) + =72 (x,7)
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where ¢, is the coefficient of diffusion...



(Anisotropic) Diffusion @

(a) Original Image (b) Time =5
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Buoyancy

e Used in convection, cloud formations, etc.

* Given a temperature state T:

— a vertical buoyancy velocity is ‘upwards’ if a node
is hotter than its neighbors’ and

— a vertical buoyancy velocity is ‘downwards’ if a
node is cooler than its neighbors



Buoyancy @
v(x,y)' =v(x,y) +

2QRfxy) = flx+1,y) = f(x = 1,y))

where ¢, is the buoyancy strength



Bouyancy
(considering neighbors)

* flx,y) = )
f(x;_Y) _Ef(xiy)
[p(f(x,y+1) —p(f(x,y — 1)]

¢

where p(f) = tanh(a(f — fc)) (an approx. of
density relative to temperature f) and o is

buoyancy strength and a and f, are constants
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Euler Method (for ODE)

e (Given:

y'(t) = f(t,y(t)) with y(to) = v,

 Do:

VYn+1 = Yn + 0f (t0, yn)
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Classical Runge Kutta Method

e (Given:

y'(t) = f(t,y(t)) with y(ty) = y,
* Do:
VYn+1 = Yn + h/6(ky + 2k, + 2k3 + k,)
tTl+1 — t’l’l + h
where i, = f(t,.
f_._f-n.‘|— f_?t-yn.‘|‘ ;_t‘hl}
ffn—|— 5 ) Yn + hﬂo.}
it



Example: (Water) Boiling @

Based on [Harris et al. 2002]
State = Temperature

Three operations:
— Diffusion, buoyancy, & latent heat

3D Simulation
— Stack of 2D texture slices




Turing: Morphogenesis and
Reaction-Diffusion (1952)

&

“Alan Turing in 1952 describing the way in which non-uniformity
(stripes, spots, spirals, etc.) may arise naturally out of a
homogeneous, uniform state. The theory (which can be called a
reaction—diffusion theory of morphogenesis), has served as a
basic model in theoretical biology, and is seen by some as the
very beginning of chaos theory.’

oU
= = D, V2U — k(UV — 16)

oV
= = D, V2V + k(UV — 12 = V)


http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Reaction%E2%80%93diffusion_system
http://en.wikipedia.org/wiki/Morphogenesis
http://en.wikipedia.org/wiki/Theoretical_biology
http://en.wikipedia.org/wiki/Chaos_theory

Gray-Scott Reaction-Diffusion” &

e State = two scalar chemical concentrations
* Simple:

— just Diffusion and ops

%—?—Dv U—'UV +F(1-U),

oV

ER DNV UV —(F + kY |




Some research...

e http://www.cc.gatech.edu/~turk/reaction diff
usion/reaction diffusion.html



http://www.cc.gatech.edu/%7Eturk/reaction_diffusion/reaction_diffusion.html
http://www.cc.gatech.edu/%7Eturk/reaction_diffusion/reaction_diffusion.html

Navier-Stokes Equations

* Describe flow of an incompressible fluid

1
8—u:—(u-V)u——Vp—VVZUJrf

ot Jo,

Advection Pressure Diffusion External Force
Gradient (viscosity)

V-u=90 Velocity is divergence-free
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Fluid Dynamics

* Solution of Navier-Stokes flow egs.

— Stable for arbitrary time steps (=fast!)
— [Stam 1999], [Fedkiw et al. 2001]

 Can be implemented on latest GPUs

— Quite a bit more complex than R-D or boiling

e See “Fast Fluid Dynamics Simulation on the
GPU” (Harris, GPU Gems, 2004)



Fluid Simulations @
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Thermodynamics

 Temperature affected by
— Heat sources
— Advection

— Latent heat released / absorbed during
condensation / evaporation

 Atemperature = advection + latent heat
release

+ temperature input



Cloud Dynamics

3 components

— 7 unknowns

Fluid dynamics
— Motion of the air

Thermodynamics
— Temperature changes

Water continuity

— Evaporation,
condensation




Cloud Dynamics 4@
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— Rate of change of value proportional to Laplacian

Wave Equation

« Remember heat equation:

* Wave equation:

— Rate of change of the rate of change is also
proportional to the Laplacian
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Wave Equation

0%u
— 2172
F—CVU

where u models the displacement and c is the
propagation speed



Water Simulation:
Wave Equation

U = value,V = rate of change

aU—b+al\72U
ot k

ov = kV2U
ot




Water Simulation:
Wave Equation

* Demo...




Water Simulation:
Sine Waves

Asin(wx + t)




Water Simulation: *@
: A "8
Sine Waves
Aisin(wix + ty) + Aysin(wyx + t,) + -+

- -
AV A VA VAV
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Water Simulation:
Sine Waves

* Using sine-wave summations:

H(x,y,t) = Z A;sin(D; - (x,y)w; + tg;)

¢

[use H as height or a pixel intensity]

* Pixel values over time are:
P(x,y,t) = (x,y,H(x,y,t))



Water Simulation:
Sine Waves

7

(here, pixel normals are computed as well for reflections)
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Water: Surface Normals

* Use binormal and tangent:

__ (dx dy dH(x,y,t)\ _ dH(x,y,t)
B(x,y,t) = (dx'dx' dx ) = (L0, dx )
dH(x,y,t)
T(x,y,t) == (0,1, )
dy
e Normalis:
N(x,y,t) =B XT

dH(x,y,t) dH(x,y,t) .

dx dy )

N(x,y,t) = (



Water Simulation: Gerstner Wave@

* These waves also change the x, y of the wave
imitating how points at top of wave are

squished together and points at bottom are
separated



Water Simulation:
Gerstner Waves

P(x,y,t)
X + Z Q;A;D;.x cos(w;D; - (x,y) + ¢;t)

¢

y+ ) QD cos(@iDi - (x,) + it)

ZAiSin(wiDi - (x,y) + ¢p;t)

where Q;=sharpness



Water Simulation:
Gerstner Waves
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Video

e https://www.youtube.com/watch?v=lgPa389v
i4s



https://www.youtube.com/watch?v=lqPa389vi4s
https://www.youtube.com/watch?v=lqPa389vi4s

Simulation Algorithm

advect e Advect quantities

accelerate — Similar to [Stam, 1999]

waterthermo| ® Compute and apply accelerations

divergence — Buoyancy

jacobi

ace0  Compute condensation, evaporation,

jacobi

jacobi and temperature changes

Sacobi e Enforce momentum conservation

u-grad(p) — Otherwise velocity dissipates, loses “swirls”

— Projection step of “Stable Fluids” [Stam, 1999]



Simulation Algorithm

* Most steps are simple
— Most use one fragment program, one pass
— Programs come directly from equations

* Tricky parts:
— Staggered grid discretization
— Stable Fluids projection step
— Boundary conditions
— 3D Simulation



Flat 3D Textures

quad primitives line primitives
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3D Texture

Corresponding Flat 3D Texture




Flat 3D Textures

* Advantages
— One texture update per operation
— Better use of GPU parallelism
— Non-power-of-two Textures

— Quick simulation preview

* Disadvantage

— Must compute texture offsets
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