
The Way of the GPU
(based on GPGPU SIGGRAPH Course)

CS535

Daniel G. Aliaga
Department of Computer Science

Purdue University

Computer Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

Today, we have GPUs…

(GPU = graphical processing unit)

Motivation: Computational Power

• Why are GPUs fast?
– Arithmetic intensity: the specialized nature of

GPUs makes it easier to use additional transistors
for computation not cache

– Economics: multi-billion dollar video game market
is a pressure cooker that drives innovation

Motivation: Flexible and Precise

• Modern GPUs are deeply programmable
– Programmable pixel, vertex, video engines
– Solidifying high-level language support

• Modern GPUs support high precision
– 32 bit floating point throughout the pipeline
– High enough for many (not all) applications

The Problem: Difficult To Use

• GPUs designed for & driven by video games
– Programming model unusual
– Programming idioms tied to computer graphics
– Programming environment tightly constrained

• Underlying architectures are:
– Inherently parallel
– Rapidly evolving (even in basic feature set!)
– Largely secret

• Can’t simply “port” CPU code!

Diagram of a Modern GPU

fast
memory

fast
memory

fast
memory

fast
memory

Input from CPU

Host interface

Geometry/Vertex processing

Triangle setup

Pixel processing

Memory Interface

nVIDIA GPU

• GTX 4090
– 16,384 cores (i.e., mini processors)
– FLOPS: 83-191 TFLOPS
– Temp: 90 C (water boils at 100 C)
– Power: 850 Watts (~a microwave oven)

• 1 Datacenter ~32,000 GPUs
– ~27 Megawatts
– (watts needed to for about 2,700 average US homes)

• For all datacenters (~11,000 datacenters globally)
– Power of about ~30,000,000 average US homes

Modern GPU has more ALU’s

GPU Pipeline: Transform
• Vertex/Geometry processor (multiple in parallel)

– Transform from “world space” to “image space”
– Compute per-primitive and per-vertex lighting

GPU Pipeline: Rasterize
(typically not programmable)

• Rasterizer
– Convert geometric rep. (vertex) to image rep.

(fragment)
• Fragment = image fragment

– Pixel + associated data: color, depth, stencil, etc.

– Interpolate per-vertex quantities across pixels

GPU Pipeline: Shade

• Fragment processors (multiple in parallel)
– Compute a color for each pixel
– Optionally read colors from textures (images)

GPU Programming Languages

• Many options!
– A while ago: “Renderman”
– cG (from NVIDIA)
– GLSL (GL shading Language)
– CUDA (more general that graphics)…

• Lets focus first on the concept, later on the
language specifics…

14

Mapping Parallel Computational
Concepts to GPUs

• GPUs are designed for graphics
– Highly parallel tasks

• GPUs process independent vertices & fragments
– Temporary registers are zeroed
– No shared or static data
– No read-modify-write buffers

• Data-parallel processing
– GPUs architecture is ALU-heavy

• Multiple vertex & pixel pipelines, multiple ALUs per pipe
– Hide memory latency (with more computation)

15

Example: Simulation Grid

• Common GPGPU computation style
– Textures represent computational grids = streams

• Many computations map to grids
– Matrix algebra
– Image & Volume processing
– Physically-based simulation
– Global Illumination

• ray tracing, photon mapping,
radiosity

• Non-grid streams can be
mapped to grids

16

Typical Stream Computation

• Grid Simulation algorithm
– Made up of steps
– Each step updates entire grid
– Must complete before next step can begin

• Grid is a stream, steps are kernels
– Kernel applied to each stream element

Cloud
simulation
algorithm

17

e.g.: Scatter vs. Gather

• Grid communication
– Grid cells share information

18

Vertex Processor

• Fully programmable (SIMD / MIMD)
• Processes 4-vectors (RGBA / XYZW)
• Capable of scatter but not gather

– Can change the location of current vertex
– Cannot read info from other vertices
– Can only read a small constant memory

• Latest GPUs: Vertex Texture Fetch
– Random access memory for vertices
– ≈Gather (But not from the vertex stream itself)

19

Fragment Processor

• Fully programmable (SIMD)
• Processes 4-component vectors (RGBA / XYZW)
• Random access memory read (textures)
• Capable of gather but not scatter

– RAM read (texture fetch), but no RAM write
– Output address fixed to a specific pixel

• Typically more useful than vertex processor
– More fragment pipelines than vertex pipelines
– Direct output (fragment processor is at end of pipeline)

20

GPU Simulation Overview

• A Simulation:
– Its algorithm steps are fragment programs

• Called Computational kernels

– Current state is stored in textures
– Feedback via “render to texture”

• Question:
– How do we invoke computation?

21

Invoking Computation

• Must invoke computation at each pixel
– Just draw geometry!
– Most common GPGPU invocation is a full-screen

quad

• Other Useful Analogies
– Rasterization = Kernel Invocation
– Texture Coordinates = Computational Domain
– Vertex Coordinates = Computational Range

22

Typical “Grid” Computation

• Initialize “view” (so that pixels:texels::1:1)
 glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, 1, 0, 1, 0, 1);
glViewport(0, 0, outTexResX, outTexResY);

• For each algorithm step:
– Activate render-to-texture
– Setup input textures, fragment program
– Draw a full-screen quad (1x1)

23

Example: N-Body Simulation
• Brute force 
• N = 8192 bodies
• N2 gravity computations

• 64M force comps. / frame
• ~25 flops per force
• 10.5 fps

• 17+ GFLOPs sustained in this example
Nyland, Harris, Prins,

GP2 2004 poster

24

Computing Gravitational Forces

• Each body attracts all other bodies
– N bodies, so N2 forces

• Draw into an NxN buffer
– Pixel (i,j) computes force between bodies i and j
– Very simple fragment program

• More than N=2048 bodies is tricky
• Why?

25

Computing Gravitational Forces
N-body force Texture

force(i,j)

Ni

N

0

j

i

j

Body Position Texture

F(i,j) = gMiMj / r(i,j)2,

r(i,j) = |pos(i) - pos(j)|

Force is proportional to the inverse square
of the distance between bodies

26

Computing Gravitational Forces
float4 force(float2 ij : WPOS,

 uniform sampler2D pos) : COLOR0

{

 // Pos texture is 2D, not 1D, so we need to

 // convert body index into 2D coords for pos tex

 float4 iCoords = getBodyCoords(ij);

 float4 iPosMass = texture2D(pos, iCoords.xy);

 float4 jPosMass = texture2D(pos, iCoords.zw);

 float3 dir = iPos.xyz - jPos.xyz;

 float r2 = dot(dir, dir);

 dir = normalize(dir);

 return dir * g * iPosMass.w * jPosMass.w / r2;

}

27

Computing Total Force
• Have: array of (i, j) forces
• Need: total force on each

particle i
– Sum of each column of the force

array

• Can do all N columns in
parallel

This is called a Parallel Reduction

force(i,j)

N-body force Texture

Ni

N

0

28

Parallel Reductions

1D parallel reduction:
sum N columns or rows in parallel

add two halves of texture together

repeatedly...

Until we’re left with a single row of texels

+
NxN

Nx(N/2)
Nx(N/4)

Nx1

Requires log2N steps

29

Update Positions and Velocities

• Now we have a 1-D array of total forces
– One per body

• Update Velocity
– u(i,t+dt) = u(i,t) + Ftotal(i) * dt
– Simple pixel shader reads previous velocity and

force textures, creates new velocity texture
• Update Position

– x(i, t+dt) = x(i,t) + u(i,t) * dt
– Simple pixel shader reads previous position and

velocity textures, creates new position texture

Linear Algebra on GPUs

• Use linear algebra for VR, education,
simulation, games and much more!

31

High Level Shading Languages

• Cg, HLSL, & OpenGL Shading Language
– Cg:

• http://www.nvidia.com/cg

– HLSL:
• http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/directx9_c/directx/graphics/reference/highlevellanguageshade
rs.asp

– OpenGL Shading Language:
• http://www.3dlabs.com/support/developer/ogl2/whitepapers/ind

ex.html

32

GPGPU Languages

• Why do want them?
– Make programming GPUs easier!

• Don’t need to know OpenGL, DirectX, or ATI/NV extensions
• Simplify common operations
• Focus on the algorithm, not on the implementation

frag2frame Smooth(vert2frag IN, uniform samplerRECT Source : texunit0, uniform samplerRECT Operator : texunit1,
 uniform samplerRECT Boundary : texunit2, uniform float4 params)
{
 frag2frame OUT;

 float2 center = IN.TexCoord0.xy;
 float4 U = f4texRECT(Source, center);

 // Calculate Red-Black (odd-even) masks
 float2 intpart;
 float2 place = floor(1.0f - modf(round(center + float2(0.5f, 0.5f)) / 2.0f, intpart));
 float2 mask = float2((1.0f-place.x) * (1.0f-place.y), place.x * place.y);

 if (((mask.x + mask.y) && params.y) || (!(mask.x + mask.y) && !params.y))
 {
 float2 offset = float2(params.x*center.x - 0.5f*(params.x-1.0f), params.x*center.y - 0.5f*(params.x-1.0f));
 ...
 float4 neighbor = float4(center.x - 1.0f, center.x + 1.0f, center.y - 1.0f, center.y + 1.0f);
 float central = -2.0f*(O.x + O.y);

 float poisson = ((params.x*params.x)*U.z + (-O.x * f1texRECT(Source, float2(neighbor.x, center.y)) +
 -O.x * f1texRECT(Source, float2(neighbor.y, center.y)) +
 -O.y * f1texRECT(Source, float2(center.x, neighbor.z)) +
 -O.z * f1texRECT(Source, float2(center.x, neighbor.w)))) / O.w;
 OUT.COL.x = poisson;
 }
 ...
 return OUT;
}

A really naïve shader

frag2frame Smooth(vert2frag IN, uniform samplerRECT Source : texunit0, uniform samplerRECT Operator : texunit1,
 uniform samplerRECT Boundary : texunit2, uniform float4 params)
{
 frag2frame OUT;

 float2 center = IN.TexCoord0.xy;
 float4 U = f4texRECT(Source, center);

 // Calculate Red-Black (odd-even) masks
 float2 intpart;
 float2 place = floor(1.0f - modf(round(center + float2(0.5f, 0.5f)) / 2.0f, intpart));
 float2 mask = float2((1.0f-place.x) * (1.0f-place.y), place.x * place.y);

 if (((mask.x + mask.y) && params.y) || (!(mask.x + mask.y) && !params.y))
 {
 float2 offset = float2(params.x*center.x - 0.5f*(params.x-1.0f), params.x*center.y - 0.5f*(params.x-1.0f));
 ...
 float4 neighbor = float4(center.x - 1.0f, center.x + 1.0f, center.y - 1.0f, center.y + 1.0f);
 float central = -2.0f*(O.x + O.y);

 float poisson = ((params.x*params.x)*U.z + (-O.x * f1texRECT(Source, float2(neighbor.x, center.y)) +
 -O.x * f1texRECT(Source, float2(neighbor.y, center.y)) +
 -O.y * f1texRECT(Source, float2(center.x, neighbor.z)) +
 -O.z * f1texRECT(Source, float2(center.x, neighbor.w)))) / O.w;
 OUT.COL.x = poisson;
 }
 ...
 return OUT;
}

A really naïve shader

Computational Frequency

• Think of your CPU program and your vertex and
fragment programs as different levels of nested
looping.

...
foreach tri in triangles {
 // run the vertex program on each vertex
 v1 = process_vertex(tri.vertex1);
 v2 = process_vertex(tri.vertex2);
 v3 = process_vertex(tri.vertex2);

 // assemble the vertices into a triangle
 assembledtriangle = setup_tri(v1, v2, v3);

 // rasterize the assembled triangle into [0..many] fragments
 fragments = rasterize(assembledtriangle);

 // run the fragment program on each fragment
 foreach frag in fragments {
 outbuffer[frag.position] = process_fragment(frag);
 }
}
...

Computational Frequency

• Branches
– Avoid these, especially in the inner loop – i.e., the

fragment program.

Computational Frequency

• Static branch resolution
– write several variants of each fragment program

to handle boundary cases
– eliminates conditionals in the fragment program
– equivalent to avoiding CPU inner-loop branching

case 2: accounts
for boundaries

case 1: no
boundaries

Computational Frequency

• Dynamic branching
– Use only when needed

• Good perf requires spatial coherence in branching

39

Memory Hierarchy

• CPU and GPU Memory Hierarchy
Disk

CPU Main
Memory

GPU Video
MemoryCPU Caches

CPU Registers GPU Caches

GPU Temporary
Registers

GPU Constant
Registers

40

CPU Memory Model

• At any program point
– Allocate/free local or global memory
– Random memory access

• Registers
– Read/write

• Local memory
– Read/write to stack

• Global memory
– Read/write to heap

• Disk
– Read/write to disk

41

GPU Memory Model

• Much more restricted memory access
– Allocate/free memory only before computation
– Limited memory access during computation

(kernel)
• Registers

– Read/write

• Local memory
– Does not exist

• Global memory
– Read-only during computation
– Write-only at end of computation (pre-computed address)

• Disk access

GPU Memory Model

• Where is GPU Data Stored?
– Vertex buffer
– Frame buffer
– Texture

Vertex
Buffer

Vertex
Processor Rasterizer Fragment

Processor

Texture

Frame
 Buffer(s)

VS 3.0 GPUs

	The Way of the GPU�(based on GPGPU SIGGRAPH Course)
	Computer Graphics Pipeline
	Today, we have GPUs…
	Motivation: Computational Power
	Motivation: Flexible and Precise
	The Problem: Difficult To Use
	Diagram of a Modern GPU
	nVIDIA GPU
	Modern GPU has more ALU’s
	GPU Pipeline: Transform
	GPU Pipeline: Rasterize�(typically not programmable)
	GPU Pipeline: Shade
	GPU Programming Languages
	Mapping Parallel Computational �Concepts to GPUs
	Example: Simulation Grid
	Typical Stream Computation
	e.g.: Scatter vs. Gather
	Vertex Processor
	Fragment Processor
	GPU Simulation Overview
	Invoking Computation
	Typical “Grid” Computation
	Example: N-Body Simulation
	Computing Gravitational Forces
	Computing Gravitational Forces
	Computing Gravitational Forces
	Computing Total Force
	Parallel Reductions
	Update Positions and Velocities
	Linear Algebra on GPUs
	High Level Shading Languages
	GPGPU Languages
	A really naïve shader
	A really naïve shader
	Computational Frequency
	Computational Frequency
	Computational Frequency
	Computational Frequency
	Memory Hierarchy
	CPU Memory Model
	GPU Memory Model
	GPU Memory Model

