
GANs

CS535

Daniel G. Aliaga

Generative Adversarial Nets
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozairy, Courville, Bengio

• A two player min-max game to generate data hopefully
indistinguishable from real data

Generative Adversarial Nets

• “We propose a new framework for estimating generative models via
an adversarial process, in which we simultaneously train two models:
a generative model G that captures the data distribution, and a
discriminative model D that estimates the probability that a sample
came from the training data rather than G. The training procedure for
G is to maximize the probability of D making a mistake.”

Generative Adversarial Nets

[from medium.com]

Generative Adversarial Nets

• G(z): generator, where is z is from p(z)

• D(x): discriminator, where x is from p(x)

• Solve

by performing k steps of improving D and then 1 step of improving G

1. Why k steps for D and one for G?

2. What about at beginning? (when G and D are untrained)

Generative Adversarial Nets

1. Why k steps for D and one for G?

Recall that training data is provided so its distribution in a sense is
defined. By keeping D nearer to its optimal (which is easier than making
a G near its optimal), it helps steer creating G assuming G learns at
least slowly

Converse: if D was completely unknown, then the system might start
converging to some undesired solution space…

Generative Adversarial Nets

2. What about at beginning? (when G and D are untrained)

Early in learning, when G is poor, D can reject samples with high
confidence because they are clearly different from the training data. In
this case, log(1 - D(G(z))) saturates.

Rather than training G to minimize log(1 - D(G(z))) we can train G to
maximize log D(G(z)).

Later on, revert log(1 - D(G(z))) …

Generative Adversarial Nets

• Training…

• 𝐷(blue), 𝑝𝑑𝑎𝑡𝑎 (black), 𝑝𝑔 (green)

“50%” training…“25%” training… Trained!

What is optimal D?

• When real cannot be distinguished from fake

• Value?
• 0.5

• Why?

• 𝐷 =
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑝𝑑𝑎𝑡𝑎 𝑥
= 0.5

What is optimal value of the minimax?

• C(G)

• C(G) = log 1/2 + log 1/2 = - log 4

Examples (2014)

Wasserstein GAN
Arjovsky, Chintala, Bottou

• Minimizes an approximation of the Earth-Mover's distance (EM)
rather than the Jensen-Shannon divergence as in the original GAN
formulation

• It leads to more stable training than original GANs with less evidence
of mode collapse

How do you condition/control the
generation based on an input?
• Random noise (input noise vector)?

• Hard to predict output…

• Another option?
• Condition based on paired data during training…

Conditional GANs

• Condition is “y”

pix2pix: https://affinelayer.com/pixsrv

https://affinelayer.com/pixsrv

How to control without paired data?

• We want to take an image from an input domain 𝐷𝑖 and then
transform it into an image of target domain 𝐷𝑡 without necessarily
having a one-to-one mapping between images from input to target
domain in the training set

How to control without paired data?

• CycleGAN: Unpaired
Image-to-Image
Translation using Cycle-
Consistent Adversarial
Networks

where

CycleGAN

BicycleGAN: Toward Multimodal Image-to-Image
Translation

• Like cGAN (i.e., pix2pix) but seek to generate realistic random
variations for a single provided condition
• Still uses paired data…

• Baseline : pix2pix condition + noise vector
• Does not work too well

• BicycleGAN:

BicycleGAN: Toward Multimodal Image-to-Image
Translation

StyleGANs: What are they?

• Demo:
• artbreeder.com

• Extension to the GAN architecture with proposed large changes including
• use of a mapping network to map points in latent space to an intermediate latent

space

• use of the intermediate latent space to control style at each point in the generator
model

• introduction to noise as a source of variation at each point in the generator model

• The discriminator or the loss function is not modified in the original
implementation of StyleGan so the same discussion about GAN loss
functions, regularization, and hyperparameters can be applied here as well

Style-based generator

• Typically latent code for a generator is given as a
Input layer (first layer of feed-forward network)

• Instead we switch to a learned constant
• Latent code: 𝑧 ∈ 𝑍
• Non-linear mapping: 𝑓: 𝑍 → 𝑊 produces 𝑤 ∈ 𝑊 – implemented

using a 8-layer MLP
• Dimensionality of both spaces to 512

• Learned affine transformations specialize 𝑤 to
styles 𝑦 = 𝑦𝑠, 𝑦𝑏 which is used to control adaptive
instance normalization (AdaIN) operations after each
convolution layer of the synthesis network 𝑔

• 𝐴𝑑𝑎𝐼𝑁 𝑥𝑖 , 𝑦 = 𝑦𝑠,𝑖
𝑥𝑖−𝜇(𝑥𝑖)

𝜎 𝑥𝑖
+ 𝑦𝑏,𝑖

• AdaIN operation takes a feature map 𝑥𝑖, which
is normalized separately, and then scaled and
biased using corresponding scalar components
from style 𝑦

• That means dimensionality of 𝑦 is twice the number of
feature maps on that layer

[Karras et. al., 2019]

- “A” stands for a learned affine transform

- “B” applies learned per-channel scaling factors
to the noise input.

- The mapping network f consists of 8 layers

- Synthesis network g consists of 18 layers — two
for each resolution (42 − 10242).

- The output of the last layer is converted to RGB
using a separate 1 × 1 convolution

- generator has a total of 26.2M trainable
parameters, compared to 23.1M in the
traditional generator

- 𝑊 controls the generator through AdaIN

- Gaussian noise is added after each convolution

Style-based generator (cont.)

• The generator is provided a a way to generate stochastic details by
introducing explicit noise inputs

• These are single-channel images that are of uncorrelated Gaussian
noise

• The noise is broadcasted to all feature maps using learned per-feature
scaling factors and then added to output of the corresponding
convolution

[Karras et. al., 2019]

Style Mixing

• Mixing regularization: encourages style to localize.
• given percentage of images are generated using two random latent codes instead of one

during training

• generating such an image simply requires from one latent code to another

• Two latent codes 𝑧1, 𝑧2 runs though the mapping network and have
corresponding 𝑤1, 𝑤2 control the style so that 𝑤1 applies before the crossover
point and 𝑤2 after it.

• This technique prevents the network from assuming that adjacent styles are
correlated

[Karras et. al., 2019]

Stochastic Variation

• In human portraits, the
following can be considered
stochastic
• Exact placement of hairs
• Stubble
• Freckles
• Skin pores

• Noise tends to only affect
the stochastic aspects of
the generation process.

(a) An example training set where some
combination (e.g., long haired males) is
missing. (b) This forces the mapping from Z to
image features to become curved so that the
forbidden combination disappears in Z to
prevent the sampling of invalid combinations.
(c) The learned mapping from Z to W is able to
“undo” much of the warping.

[Karras et. al., 2019]

Examples of stochastic variation.

(a) Two generated images.

(b) Zoom-in with different realizations of input
noise. While the overall appearance is almost
identical, individual hairs are placed very
differently

(c) Standard deviation of each pixel over 100
different realizations, highlighting which parts
of the images are affected by the noise. The
main areas are the hair, silhouettes, and parts
of background, but there is also interesting
stochastic variation in the eye reflections.

Global aspects such as identity and pose are
unaffected by stochastic variation.

[Karras et. al., 2019]

Can you disentangle the latent vector?

• How?

Semi-Supervised StyleGan

• Disentanglement learning is crucial for controllable generation, where the
control or style factors specified to the generator need to be disentangled
for faithful representation

• Problem with current disentangled methods
• Non-identifiability

• Hard acquiring large number of fully annotated samples
• Multiple runs will not observe the same latent representations

• Human feedback is required to discern
• factors the model has learnt
• Semantic meaning different values of discovered factor code represent

• We need a reliable way to control generation for practical use

• Adding a small amount of labeled data may resolve non-identifiability and
lead to interpretable factors.

[Nie et. al., 2020]

Unsupervised Disentanglement Learning

• Using Info-StyleGan, enabling StyleGAN with mutual information
loss, provides a stronger prior for disentanglement compared to
regularization used in Variational Autoencoders or GANs

• Mapping network in the generator of
Info-Style GAN now conditions on a
factor code, a vector representing each
factor of variation in each dimension, by
simply concatenating it with the latent
code 𝑧.

• The output of the mapping network is called
conditional styles. This will modulate each
block in the synthesis network using AdaIN.

[Nie et. al., 2020]

Mapping network in the generator conditions on
the factor code and the encoder, which shares all
layers in the discriminator except for the last
layer, predicts its value.

Unsupervised code reconstruction
loss

• unsupervised code reconstruction loss - the mutual information loss of
InfoGAN can approximately be an
• 𝐿𝑢𝑛𝑠𝑢𝑝 = σ𝑐~𝐶,𝑧~𝑝𝑧

∥ 𝐸 𝐺 𝑐, 𝑧 − 𝑐 ∥2
Where 𝐶 denotes the set of all factor codes and 𝑝𝑧 denotes the prior
distribution of latent code 𝑧. 𝐺 represents the generator, E the encoder, D the
discriminator, and 𝛾 is a hyperparameter that controls tradeoff between image
realism and disentanglement quality

- 𝐿𝐺 = 𝐿𝐺𝐴𝑁 + 𝛾 𝐿𝑢𝑛𝑠𝑢𝑝
- 𝐿(𝐷,𝐸) = −𝐿𝐺𝐴𝑁 + 𝛾 𝐿𝑢𝑛𝑠𝑢𝑝
𝐿𝐺𝐴𝑁 is the original GAN loss function

[Nie et. al., 2020]

Semi-StyleGAN

• How do we make the disentanglement model… semi-supervised?

• Supervised code reconstruction! – for the small amount of labeled
data
• 𝐿𝑠𝑢𝑝 = σ 𝑥,𝑐 ~𝜏 ∥ 𝐸 𝑥 − 𝑐 ∥2

where 𝜏 represents set of label real image and factor code. The semi-
supervised loss functions become

𝐿𝐺 = 𝐿𝐺𝐴𝑁 + 𝛾𝐺𝐿𝑢𝑛𝑠𝑢𝑝
𝐿(𝐷,𝐸) = −𝐿𝐺𝐴𝑁 + 𝛾𝐸𝐿𝑢𝑛𝑠𝑢𝑝 + 𝛽𝐿sup

Where 𝛽 is weight of the supervised term

[Nie et. al., 2020]

A better way of doing it

• Issues with supervised code reconstruction things like image rotations
and color randomization will cause inconsistency.

• What else can we do?
• Mixed observation code pairs. Use this to add a smoothness regularization.

• Given a labeled observation-code pair 𝑥, 𝑐 ~ 𝜏 and a generated pair (x’,c’)
where 𝑥′ = 𝐺 𝑧, 𝑐′ , we get a set of mixed observation-code pairs 𝑀 = {(෤𝑥,
𝑐)} by

 𝜆~ 𝐵𝑒𝑡𝑎(𝜉, 𝜉), 𝜆′ = max(𝜆, 1 − 𝜆)

 ෤x = 𝜆′𝑥 + 1 − 𝜆′ 𝑥′

 𝑐 = 𝜆′𝑐 + 1 − 𝜆′ 𝑐′

where ξ is a hyperparameter

[Nie et. al., 2020]

Encouraging smoothness in the latent space
of GANs

𝐿𝑠𝑟 = ෍

𝑥,𝑐 ~𝑀

∥ 𝐸 𝑥 − 𝑐 ∥2

We can use this to update our previous loss terms!

Where 𝛼 is the weight of the smoothness term

This way, it not only encourages smooth behaviors of both the generator and
encoder, but also takes good advantages of enormous fake data for
disentanglement.

𝐿𝐺 = 𝐿𝐺𝐴𝑁 + 𝛾𝐺𝐿𝑢𝑛𝑠𝑢𝑝 + 𝛼𝐿𝑠𝑟
. 𝐿(𝐷,𝐸)= −𝐿𝐺𝐴𝑁 + 𝛾𝐸𝐿𝑢𝑛𝑠𝑢𝑝 + 𝛽𝐿sup + 𝛼𝐿𝑠𝑟

[Nie et. al., 2020]

New thoughts: Implicit competitive
regularization in GANs

	Slide 1: GANs CS535
	Slide 2: Generative Adversarial Nets Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozairy, Courville, Bengio
	Slide 3
	Slide 4: Generative Adversarial Nets
	Slide 5: Generative Adversarial Nets
	Slide 6: Generative Adversarial Nets
	Slide 7: Generative Adversarial Nets
	Slide 8: Generative Adversarial Nets
	Slide 9
	Slide 10: Generative Adversarial Nets
	Slide 11: What is optimal D?
	Slide 12: What is optimal value of the minimax?
	Slide 13: Examples (2014)
	Slide 14: Wasserstein GAN Arjovsky, Chintala, Bottou
	Slide 15: How do you condition/control the generation based on an input?
	Slide 16: Conditional GANs
	Slide 17: pix2pix: https://affinelayer.com/pixsrv
	Slide 18: How to control without paired data?
	Slide 19: How to control without paired data?
	Slide 20: CycleGAN
	Slide 21: BicycleGAN: Toward Multimodal Image-to-Image Translation
	Slide 22: BicycleGAN: Toward Multimodal Image-to-Image Translation
	Slide 23: StyleGANs: What are they?
	Slide 24: Style-based generator
	Slide 25
	Slide 26: Style-based generator (cont.)
	Slide 27: Style Mixing
	Slide 28: Stochastic Variation
	Slide 29
	Slide 30: Can you disentangle the latent vector?
	Slide 31: Semi-Supervised StyleGan
	Slide 32: Unsupervised Disentanglement Learning
	Slide 33
	Slide 34: Unsupervised code reconstruction loss
	Slide 35: Semi-StyleGAN
	Slide 36: A better way of doing it
	Slide 37: Encouraging smoothness in the latent space of GANs
	Slide 38
	Slide 39
	Slide 40: New thoughts: Implicit competitive regularization in GANs

