Triangulation and Voronoi Regions

CS535

Daniel G. Aliaga
Department of Computer Science
Purdue University

[some slides based on Profs. Shmuel Wimer and Andy Mirzaian]
Lemma: Every polygon must have at least one strictly convex vertex.

Proof: Let the vertices be counterclockwise ordered. Traversing the boundary, a convex vertex corresponds to a left turn.

Pick the lowest vertex (pick the rightmost if there are a few). \(L \) is a line passing through \(v \). The edge following \(v \) must lie above \(L \). ■
Lemma: Every polygon of \(n \geq 4 \) vertices has a diagonal.

Proof: There exists a strictly convex vertex \(v \). Let \(a \) and \(b \) be vertices adjacent to \(v \). If \([a,b]\) is a diagonal we are done. Else...
\(\Delta avb \) must contain at least one vertex of \(P \).

Let \(x \) be the closest vertex to \(v \), measured orthogonal to the line passing through \(ab \).

The interior of \(\Delta cvd \) cannot contain any point of \(\partial P \).

Therefore \([x, v] \cap P = \{x, v\}\), hence a diagonal. ■
Theorem: Every n-vertex polygon P can be triangulated.

Proof: By induction on n.

If $n=3$ P is a triangle.

Let $n\geq 4$. By lemma, P has a diagonal d which divides P into two polygons P_1 and P_2, having $n_1 < n$ and $n_2 < n$ vertices, respectively. P_1 and P_2 can be triangulated by induction hypothesis. ■
Interesting Question: Do all triangulations of a given polygon have the same number of diagonals and triangles?

Answer: Every triangulation of an n-vertex polygon P has $n-3$ diagonals and $n-2$ triangles.
Triangulation Complexity

Implementing triangulation as in the existence theorem requires $O(n^4)$ time.

There are $n(n-3)/2$ diagonal candidates.

Checking validity of a diagonal requires intersection test against all edges and previously defined diagonals, which takes $O(n)$ time.

This is repeated $n-3$ times, yielding total $O(n^4)$ time.
Triangulation Complexity

• Naïve: $O(n^4)$
 – There are $n(n-3)/2$ diagonal candidates
 – Checking the validity of a diagonal against all previous edges and diagonals takes $O(n)$
 – This is repeated $n-3$ times
 – Total time $O(n^4)$
Triangulation Complexity

• Lennes, 1911: $O(n^2)$
 – Pick the leftmost vertex v of P and connect its two neighbors u and w. Checking whether uw is a diagonal takes $O(n)$. If it is, the rest is a $(n-1)$-vertex polygon.
 – If uw is not a diagonal, get x, the farthest vertex from uw inside Δuvw. This takes $O(n)$ time. vx is a diagonal dividing P into P_1 and P_2, having n total number of vertices.
 – Recursive application of the above procedure consumes total $O(n^2)$ time.
Triangulation Complexity

Definition: P is monotone w.r.t to a line l if P intersects with any line l' perpendicular to l in a single segment, a point or it doesn’t intersect.

The diagram illustrates the concept of monotonicity and non-monotonicity with respect to a line l. The left side shows an example of a monotone polygon, while the right side shows a non-monotone polygon.
Triangulation Complexity

• An n-vertex simple polygon can be partitioned into y-monotone polygons in $O(n \log n)$ time and $O(n)$ storage

• Monotone polygon can be triangulated in $O(n)$
Triangulating y-Monotone Polygon (Sketch)

P's vertices are sorted in descending y.

P's boundary is traversed with one leg on \textbf{left} and one leg on \textbf{right}, by popping and pushing vertices from a stack.

Diagonals insertions are decided according to stack's top status.
Triangulation Complexity

• Theorem: (Gary et. al. 1978) A simple n-vertex polygon can be triangulated in $O(n \log n)$ time and $O(n)$ storage.

• The problem has been studied extensively between 1978 and 1991, when in 1991 Chazelle presented an $O(n)$ time complexity algorithm.
P = \{ p_1, p_2, \ldots, p_n \} a set of n points in the plane.
Voronoi Diagram:

Voronoi(P): # regions = n, # edges ≤ 3n-6, # vertices ≤ 2n-5.
Delaunay Triangulation =
Dual of the Voronoi Diagram

DT(P):
- # vertices = n,
- # edges ≤ 3n-6,
- # triangles ≤ 2n-5.
Delaunay triangles have the “empty circle” property.
Voronoi Diagram & Delaunay Triangulation
\(P = \{ p_1, p_2, \ldots, p_n \} \) a set of \(n \) points in the plane.

Assume: no 3 points collinear, no 4 points cocircular.

\(H(p_i, p_j) \) half-plane

\(PB(p_i, p_j) \) perpendicular bisector of \(p_i p_j \).

Voronoi Region of \(p_i \):

\[
V(p_i) = \bigcap_{\substack{j=1 \atop j \neq i}}^n H(p_i, p_j)
\]

Voronoi Diagram of \(P \):

\[
VD(P) = \bigcup_{i=1}^n \{ V(p_i) \}
\]
Each Voronoi region $V(p_i)$ is a convex polygon (possibly unbounded).

$V(p_i)$ is unbounded \iff p_i is on the boundary of $\text{CH}(P)$.

Consider a Voronoi vertex $v = V(p_i) \cap V(p_j) \cap V(p_k)$.
Let $C(v)$ = the circle centered at v passing through p_i, p_j, p_k.

$C(v)$ is circumcircle of Delaunay Triangle (p_i, p_j, p_k).

$C(v)$ is an empty circle, i.e., its interior contains no other sites of P.

p_j = a nearest neighbor of p_i \Rightarrow $V(p_i) \cap V(p_j)$ is a Voronoi edge
\Rightarrow (p_i, p_j) is a Delaunay edge.
DT Properties

- DT(P) is straight-line dual of VD(P).
- DT(P) is a triangulation of P, i.e., each bounded face is a triangle (if P is in general position).
- \((p_i, p_j)\) is a Delaunay edge \(\iff\ \exists\) an empty circle passing through \(p_i\) and \(p_j\).
- Each triangular face of DT(P) is dual of a Voronoi vertex of VD(P).
- Each edge of DT(P) corresponds to an edge of VD(P).
- Each node of DT(P), a site, corresponds to a Voronoi region of VD(P).
- Boundary of DT(P) is CH(P).
- Interior of each triangle in DT(P) is empty, i.e., contains no point of P.
Computing Delaunay Triangulation

• Many algorithms: $O(n \log n)$

• Lets use flipping:
 – Recall: A Delaunay Triangulation is a set of triangles T in which each edge of T possesses at least one empty circumcircle.
 – Empty: A circumcircle is said to be empty if it contains no nodes of the set V
What is a flip?

A non-Delaunay edge flipped
Flip Algorithm

• ??
Flip Algorithm

1. Let V be the set of input vertices.
2. T = Any Triangulation of V.
3. Repeat until all edges of T are Delaunay edges.
 a. Find a non-delaunay edge that is flippable
 b. Flip

Naïve Complexity: O(n^2)
Locally Delaunay \rightarrow Globally Delaunay

• If T is a triangulation with all its edges locally Delaunay, then T is the Delaunay triangulation.

• Proof by contradiction:
 – Let all edges of T be locally Delaunay but an edge of T is not Delaunay, so flip it...
Flipping

• Other flipping ideas?
Randomized Incremental Flipping

• Complexity can be $O(n \log n)$
Popular Method

• Fortune’s Algorithm
The Wave Propagation View

Simultaneously drop pebbles on calm lake at n sites.

Watch the intersection of expanding waves.
Time as 3rd dimension

- All sites have identical opaque cones.
All sites have identical opaque cones.
cone(p) \cap cone(q) = vertical hyperbola h(p,q).
Vertical projection of h(p,q) on the xy base plane is PB(p,q).