Texture Mapping

CS535
Daniel G. Aliaga
Department of Computer Science
Purdue University
Texture mapping

• Model surface-detail with images
 – wrap object with photograph(s)
 – graphics object itself is a simpler model but “looks” more complex
Texture mapping

- Model surface-detail with images
 - wrap object with photograph(s)
 - graphics object itself is a simpler model but “looks” more complex
Texture mapping

- Generic image to represent material
 - e.g., tile pattern

bark

veneer

bricks
Tiling

- Repeat pattern
Tiling

- Repeat pattern
Tiling

- Repeat pattern
- How can we improve?
Tiling

• Repeat pattern
 – reduce seems by mirroring
Tiling

- Repeat pattern
 - reduce seems by mirroring
Tiling

- Repeat pattern
 - reduce seems by mirroring
Tiling

- Repeat pattern
 - reduce seems by mirroring
 - How we can further improve?
Tiling

- Repeat pattern
 - reduce seems by mirroring
 - reduce seems by choosing tile that covers one period of repeated texture
Tiling
Texture mapping limitations do exist...
Bricks are similar not identical
Solution?
Solution: Texture synthesis...
Texture coordinates

• Mechanism for attaching the texture map to the surface modeled
 – a pair of floats \((s, t)\) for each triangle vertex
 – corners of the image are \((0, 0), (0, 1), (1, 1),\) and \((1, 0)\)
 – tiling indicated with tex. coords. \(> 1\)
 – *texels* – color samples in texture maps
Texture coordinates

Point coordinates:
- $P_1(1, 0)$
- $P_2(0, 0)$
- $P_3(0, 1)$
- $P_4(1, 1)$
Texture mapping

\[P_2(0, 0) \]
\[P_3(0, 1) \]
\[P_4(1, 1) \]
\[P_1(1, 0) \]

\[P_2' \]
\[P_3' \]
\[P_1' \]

\[P_1(1, 0) \]

\[P_2(0, 0) \]

\[P_3(0, 1) \]

\[P_4(1, 1) \]

Texture mapping diagram with points and vectors labeled.
Texels: texture elements

$P_1'(u_1, v_1, s_1, t_1)$

$P'(u, v, s, t)$

$P_3'(u_3, v_3, s_3, t_3)$

$P_2'(u_2, v_2, s_2, t_2)$
Texture mapping

Problem: how to compute the texture coordinates for an interior pixel?
Texture mapping

Solution: *interpolate* vertex texture coordinates
Parameter Interpolation

- Texture coordinates, colors, normals, etc.
Interpolation Problem:
Solution: Perspectively Correct Interpolation

• Normally:

\[u = (1 - \alpha)u_0 + \alpha u_1 \]

Instead:

\[u = \frac{\left[\frac{(1 - \alpha)u_0}{z_0} + \frac{\alpha u_1}{z_1} \right]}{\left[\frac{(1 - \alpha)}{z_0} + \frac{\alpha}{z_1} \right]} \]
Level of detail problem

If curious, you can read more on this subject!