Ambient Occlusion

CS535
Daniel G. Aliaga
Department of Computer Science
Purdue University
Ambient Occlusion

• It is a lighting technique to increase the realism of a 3D scene by a “cheap” imitation of global illumination
History

• In 1998, Zhukov introduced *obscurances* in the paper “An Ambient Light Illumination Model.”

• The effect of obscurances: we just need to evaluate the *hiddenness* or occlusion of the point by considering the objects around it.
Global Illumination

Ray tracing Radiosity
Phong Illumination Model

\[I = I_a + I_d + I_s \]

\[I_a = IA \cdot occ (v) \]

Modulate the intensity by an occlusion factor

Constant ambient intensity rendering
Occlusion Factor/Map

- Shooting rays outwards
- Determine the occlusion factor as a percentage
Inside-Looking-Out-Approach: Ray Casting

- Cast rays from \(p \) in uniform pattern across the hemisphere.
- Each surface point is shaded by a ratio of ray intersections to number of original samples.
- Subtracting this ratio from 1 gives us dark areas in the occluded portions of the surface.

\[\text{e.g.: Cast 13 rays} \]
\[9 \text{ intersections} \]
\[\Rightarrow \text{Color} \times \frac{4}{13} \]
Inside-Looking-Out-Out Approach: Hardware Rendering

- Render the view from p toward the normal N
- Rasterize black geometry against a white background.
- Take the (cosine-weighted) average of rasterized fragments.

11 black fragments \Rightarrow Color $\times 14/25$
Comments

• Huge pre-computation time per scene (20min)
• Store occlusion factor as vertex attributes
• Variations on sampling method
• “Inside-out” algorithm
• “outside-in” alternative
Outside-In Alternative
[Sattler et. al 2004]

\[c_i = \sum_{j=1}^{k} M_{ij} I_j \]
enable orthographic projection
disable framebuffer

for all light directions j do
 set camera at light direction l_j
 render object into depth buffer with polygon offset
 for all vertices i do
 begin query i
 render vertex i
 end query i
 end for
for all vertices i do
 retrieve result from query i
 if result is “visible” then
 $$M_{ij} = n_i \cdot l_j$$
 end if
end for

$$M_{ij} = \begin{cases}
 n_i \cdot l_j &: \text{vertex visible} \\
 0 &: \text{vertex invisible}
\end{cases}$$

$$c_i = \sum_{j=1}^{k} M_{ij} I_j$$
Sattler et al.

• For each light on the light sphere
• Take the depth map (for occlusion query)
• Use occlusion query to determine the visibility matrix
Image-Based AO

Image-Based AO