Procedural Modeling

Fall 2016

Daniel G. Aliaga
Department of Computer Science
Purdue University
Procedural Modeling

• Apply algorithms for producing objects and scenes
• The rules may either be embedded into the algorithm, configurable by parameters, or externally provided
Procedural Modeling

• Fractals
• Terrains
• Image-synthesis
 – Perlin Noise
 – Clouds
• Plants
• Cities
• And procedures in general...
Fractals

• Consider a simple line fractal
 – Split a line segment, randomize the height of the midpoint by some number in the \([-r,r]\) range
 – Repeat and randomize by \([-r/2,r/2]\)
 – Continue until a desired number of steps, randomizing by half as much each step
Fractals and Terrains

• A similar process can be applied to squares in the xz plane
 – At each step, an xz square is subdivided into 4 squares, and the y component of each new point is randomized
 – By repeating this process recursively, we can generate a mountain landscape
Terrains

- A similar process can be applied to squares in the xz plane
 - At each step, an xz square is subdivided into 4 squares, and the y component of each new point is randomized
 - By repeating this process recursively, we can generate a mountain landscape
Image Synthesis

• Procedurally generate an image (pixels)
Idea: Perlin Noise

- Procedurally generate noise
 - http://js1k.com/demo/543
City Modeling

• Procedural Modeling of Cities
 (more on this later...)
Plant Modeling

• The Algorithmic Beauty of Plants
Background: Chomsky Hierarchy

- **Type 0 grammars**
 - Unrestricted, recognized by Turing machine
- **Type 1 grammars**
 - Context-sensitive grammars
- **Type 2 grammars**
 - Context-free grammars
- **Type 3 grammars**
 - Regular grammars (e.g., regular expressions)
Lindenmayer system (or L-system)

- A context-free or context-sensitive grammar
- All rules are applied in “every iteration” before jumping to the next level/iteration
- Can be deterministic or non-deterministic
L-system

• Variables: a
• Constants: +, - (rotations of + or – 90 degrees)
• Initial string (axiom): s=a
• Rules: a → a+a-a-a+a
(Context-Free) L-system for Plants

Figure 1.24: Examples of plant-like structures generated by bracketed OL-systems. L-systems (a), (b) and (c) are edge-rewriting, while (d), (e) and (f) are node-rewriting.
L-system for Plants (stochastic)

\[\omega : F \]
\[p_1 : F \stackrel{33}{\rightarrow} F[+F]F[-F]F \]
\[p_2 : F \stackrel{33}{\rightarrow} F[+F]F \]
\[p_3 : F \stackrel{34}{\rightarrow} F[-F]F \]

Figure 1.27: Stochastic branching structures
L-system for Plants (3D)

\[n=5, \delta=18^\circ \]

\[\omega : \text{plant} \]
\[p_1 : \text{plant} \rightarrow \text{internode} + [\text{plant} + \text{flower}] - - //\]
\[[- \text{leaf}] \text{internode} [+ + \text{leaf}] - \]
\[\text{plant} \text{flower}] + + \text{plant} \text{flower}] \]

\[p_2 : \text{internode} \rightarrow F \text{seg} [/ / \& \& \text{leaf}] [/ / \& \& \text{leaf}] F \text{seg} \]

\[p_3 : \text{seg} \rightarrow \text{seg} F \text{seg} \]

\[p_4 : \text{leaf} \rightarrow [[\{ +f-ff-f+ \mid +f-ff-f \}]] \]

\[p_5 : \text{flower} \rightarrow \{ \& \& \& \& \text{pedicel} \} / \text{wedge} // / / \text{wedge} // / / \text{wedge} // / / \text{wedge} // / / \text{wedge} \]

\[p_6 : \text{pedicel} \rightarrow FF \]

\[p_7 : \text{wedge} \rightarrow [[\& \& \& \& \& \& \& -f+f -f+f]] \]

Figure 1.26: A plant generated by an L-system

Figure 1.28: Flower field
Koch Snowflake
Demo

Shape Grammar

- Is used to generate geometric models from a set of shapes and rules

Shape Grammar
Shape Grammar

\[
\text{rule} \quad \rightarrow \quad \begin{array}{c}
\text{shape} \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\end{array}
\]

DERIVATION

\[
\begin{array}{c}
\text{shape} \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\end{array}
\]
Shape Grammar

OTHER DESIGNS IN THE LANGUAGE
Exercise: let’s make some art!
Shape Grammar

Ice-ray grammar
Shape Grammar

Mughul garden grammar
Shape Grammar

• Style: Mediterranean
Cellular Automata

- A CA is a spatial lattice of N cells, each of which is one of \(k \) states at time \(t \).
- Each cell follows the same simple rule for updating its state.
- The cell's state \(s \) at time \(t+1 \) depends on its own state and the states of some number of neighbouring cells at \(t \).
- For one-dimensional CAs, the neighbourhood of a cell consists of the cell itself and \(r \) neighbours on either side. Hence, \(k \) and \(r \) are the parameters of the CA.
- CAs are often described as discrete dynamical systems with the capability to model various kinds of natural discrete or continuous dynamical systems.
John Conway’s Game of Life

- 2D cellular automata system.
- Each cell has 8 neighbors - 4 adjacent orthogonally, 4 adjacent diagonally. This is called the Moore Neighborhood.
John Conway’s Game of Life

• A live cell with 2 or 3 live neighbors survives to the next round.
• A live cell with 4 or more neighbors dies of overpopulation.
• A live cell with 1 or 0 neighbors dies of isolation.
• An empty cell with exactly 3 neighbors becomes a live cell in the next round.
Is it alive?

- http://www.bitstorm.org/gameoflife/

- Compare it to the definitions...
Cellular Automata

- Used in computer graphics:
 - Cellular Texturing
Urban Procedural Modeling

- **Cities**
- **Buildings**
- **CityEngine**
 - CityEngine
• Procedural Modeling of Cities
 – http://www.youtube.com/watch?v=khrWonALQiE

• Procedural Modeling of Buildings
 – http://www.youtube.com/watch?v=iDsSrMkW1uc

• Procedural Modeling of Structurally Sound Masonry Buildings
 – http://www.youtube.com/watch?v=zXBAthLSxSQ

• Image-based Procedural Modeling of Facades
 – http://www.youtube.com/watch?v=SncibzYy0b4
Videos and more

• Image-based Modeling
 – http://www.ece.nus.edu.sg/stfpage/eletp/Projects/ImageBasedModeling/
 – Facades: http://www.youtube.com/watch?v=amD6_i3MVZM

• Our Work:
 – CGVLAB Urban