Omnidirectional Cameras

CS 535
Daniel G. Aliaga

Cameras

- Traditional camera
 - Pinhole Camera Model
 - Problems: aberrations, distortions
 - Tradeoff between aperture, shutter speed, focus, dynamic range
 - Calibration
 - Fit an assumed camera model to an actual camera

- Omnidirectional cameras
 - Single camera, multiple cameras, etc
 - Localization and pose estimation
 - Where is the camera relative to the object or environment

A little bit of history...

- Omnidirectional cameras are also called panoramic cameras
 - “Panorama” comes from the Greek phrase “all sight”
- Originally used for artistic purposes
- Robert Barker obtained a patent for the idea of a panorama in 1794
 - “A Painting without Equal”
- In 1800s, panorama became a common European word

A little bit of Biology...

- Some animals are capable of panoramic vision
 - e.g., certain insects, crustaceans (e.g., lobster)
- Diurnal Insect Vision
- Nocturnal Insect Vision
- Crustacean Vision

Taxonomy of Omnidirectional Camera Designs

- Single center-of-projection
 - Like a traditional camera, light rays meet at a single “focal point”
- Multiple center-of-projection
 - Camera does not have a single focal point
 - Sampled surfaces can be missing or duplicated in full image
 - Mathematical (re)projections are more complicated

- Single Camera/Image
 - One “view” is acquired per image
- Multiple Camera/Image
 - A single “view” composed by compositing several images

Example Omnidirectional Camera Designs

- Rotating camera design
- Fish-eye lens design
- Multiple camera planar mirror design
- Single camera curved mirror design
Rotating Camera Design

- Place a camera on a tripod and spin it around snapping pictures every so often

- Pros
 - Simple

- Cons
 - Multiple centers-of-projection
 - Multiple (overlapping images) to composite
 - Vertical “jitter”
 - Slow acquisition process

Examples

- Tienamen

Fish-Eye Lens Design

- Use a wide field-of-view lens (~180 degrees) placed in front of a traditional camera

 - Pros:
 - Also relatively simple for users (making the lens can be troublesome for designers)

 - Cons:
 - Very severe image distortion
 - Low resolution around perimeter of field-of-view
 - Almost a single center-of-projection

Multiple Camera Planar Mirror Design

- Catadioptric = reflective (mirror) + refractive (lens)

 http://www.fullview.com [Nalwa96]

Single Camera Curved Mirror Design

- Theoretical solutions to a single center-of-projection panoramic camera use mirrors that are subsets of swept conic sections
 - Cones
 - Spheres
 - Ellipsoids
 - Hyperboloids
 - Paraboloids
Single Camera Curved Mirror Design

- Theoretical solutions to a single center-of-projection panoramic camera use mirrors that are subsets of swept conic sections
 - Cones
 - Spheres
 - Ellipsoids
 - Hyperboloids
 - Paraboloids

Examples

- Walking in the mirror
- Museum
Catadioptric Paraboloidal Camera Calibration

- Assuming incident equals reflected angle:
 \[
 \frac{i - m}{i - m} \cdot \hat{n} = \frac{p - m}{p - m} \cdot \hat{n}
 \]

- And given a 3D point \(p \), mirror radius \(r \), convergence distance \(H \), we group and rewrite in terms of \(m \):
 \[
 m^2 p^2 m_1 m_2 + 2 r^2 m_1^2 (2 p_i H - 2 r_i^2 m_1) m_2^2 + r^4 (4 r_i^2 H m_2^2 (r_i^2 + 2 r_i^2 H)) = 0
 \]