Ori
An Interactive Paper Folding Simulation
Purdue University
CS 490T
Tim Thirion, Darin Rajan, and Jennifer Lin

Overview
• Motivation: The History of Origami
• Previous Research
• The Objective
• Data Structures and Operations
• Implementation Issues
• Demo
• Conclusion

History
• Originated in Japan several hundred years ago
• The practice of paper folding was divided into:
 • Recreational
 • Ceremonial
• The name origami was coined in 1880 from the words oru (to fold) and kami (paper). Previously, the art was called orikata ("folded shapes").
• Today, hobbyists and professional paper folders are spread throughout the world

Previous Research
• Mathematical Research
 • Huzita’s Axioms: Provide a generic mathematical framework that describe all origami folds.
 • Erik Demaine (MIT) – Developed several theorems related to paper folding and cutting.
 • Protein folding in biochemistry.
• Interactive Origami Simulations
 • Very few (is this a warning?)
 • Only a 2D application could be found

Objective
• To create a system that allows the user to create simple, 3D origami objects using an intuitive interface.
• The goal is to design a system such that basic folds are immediately available and complex folds can be added.

Goal
• Starting with a square of virtual paper, the user interactively folds until forming a symbolic or representative object.
Data Structures and Operations

- How do we represent an origami computationally?
 - Many different ways to do it
 - Essentially an origami is a set of polygons
 - Trees and lists are two ways of storing the polygons.
 - This is a tough decision...

Connectivity

- Observation: An origami is highly connected.
 - It has three data components:
 - Vertex – A point in space
 - Edge – A connection between two vertices
 - Face – A sequence of edges that form a closed polygon
 - An origami is then approximated by a set of faces.

Conceptual Examples

- A sequence of simple bends:
 - Also, vertices keep track of the edges that are incident upon it.
 - Edges keep track of the faces to the left and to the right.
 - A "Winged Edge Boundary Representation"

The Three Core Operations

- Make a fold line to divide a face into two.
- Select a vertex and use it to label all of the vertices as being either fixed or moving.
- Rotate interactively all of the "moving" vertices about the fold line.

Complexity Issues

- It is difficult to determine if the sequence produced a fold acceptable to the rules of origami:
 - It cannot self-intersect.
 - It cannot be cut.
 - Many other constraints...
 - A few degenerate sequences can be determined from the input sequence and state of the data structures.

Complexity Issues

- Implementation of visual effects
 - Advanced lighting, advanced shading, and shadowing were completely dependent on the origami data structure.
 - As the data structure changed, the algorithm for these effects had to change
 - Many are tough to find and remedy.
 - Because of this, the simulation is often easily broken.
 - Undo and Redo help tremendously when this occurs.
Conclusion

- Research in origami is geared toward producing mathematical theorems, not interactive simulations.
- For our system, simple folds are easy; sequences of simple folds are difficult.
- Trying to catch degenerate cases is difficult.
- Debugging involves tracing through the entire structure and discerning the unique circumstances that caused the crash.

Questions, Comments, Rotten Fruit?
- tthirion@purdue.edu
- rajand@purdue.edu
- linjs@purdue.edu