Surface Triangulation and Voronoi Regions

CS334
Fall 2023

Daniel G. Aliaga
Department of Computer Science Purdue University

[Slides with help from Michael Kazhdan @ JHU, Ioannis Stamos @ CUNY, and
Profs. Shmuel Wimer and Andy Mirzaian]

Motivation

- Time of flight
- Structured light
- Stereo images
- Shape from shading
- Etc.

Motivation

Surface reconstruction

Marching Cubes

If the function is sampled on a regular voxel grid, we can independently triangulate each voxel.

Marching Cubes

Iso-vertices on an edge are only determined by the values on the corner of the edge:
\Rightarrow Iso-vertices are consistent across voxels.

Marching Cubes

Iso-edges on a face are only determined by the values on the face:
\Rightarrow Each iso-edge is shared by two triangles so the mesh is water-tight.

Challenges

Extracting a surface by independently triangulating the leaf octants, depth-disparities can cause:

- Inconsistent extrapolation to edges
\Rightarrow Inconsistent iso-vertex positions

Challenges

Extracting a surface by independently triangulating the leaf octants, depth-disparities can cause:

- Inconsistent extrapolation to faces
\Rightarrow Inconsistent iso-edges

Marching Cubes

Ball-pivoting

Bernardini et al., IBM

Fixed-radius ball "rolling" over points selects subset of alpha-shape.

Pivoting in 2D

(a)

(b)

(c)

Circle of radius ρ pivots from point to point, connecting them with edges.
When sampling density is low, some of the edges will not be created, leaving holes.
(c) When the curvature of the manifold is larger than $1 / \rho$, some of the points will not be reached by the pivoting ball, and features will be missed.

The algorithm [Edge representation]

- Edge (si, sj)
- Opposite point so, center of empty ball c
- Edge: "Active", "Boundary", or "Frozen"

SO

Pivoting example

Initial seed triangle:
Empty ball of radius ρ passes through the three points
$\xrightarrow{\text { Active edge }}$

- Point on front

Pivoting example

Active edge
Ball pivoting around active edge

- Point on front

Pivoting example

Active edge
Ball pivoting around active edge

- Point on front

Pivoting example

Active edge
Ball pivoting around active edge

- Point on front

Pivoting example

Active edge
Ball pivoting around active edge

- Point on front

Pivoting example

Active edge
Ball pivoting around active edge

- Point on front
- Internal point

Pivoting example

Boundary edge

Active edge

Ball pivoting around active edge No pivot found

- Point on front
- Internal point

Pivoting example

Boundary edge

Active edge
Ball pivoting around active edge

- Point on front
- Internal point

Pivoting example

Boundary edge

Active edge

Ball pivoting around active edge No pivot found

- Point on front
- Internal point

Pivoting example

Boundary edge

Active edge
Ball pivoting around active edge

- Point on front
- Internal point

Pivoting example

Boundary edge

Frozen edge
\qquad

$\xrightarrow{\text { Active edge }}$
Ball pivoting around active edge

- Point on front
- Internal point

Pivoting example

Boundary edge

Frozen edge
\qquad

$\xrightarrow{\text { Active edge }}$
Ball pivoting around active edge

- Point on front
- Internal point

Pivoting example

Boundary edge

Frozen edge
\qquad

Active edge
Ball pivoting around active edge

- Point on front
- Internal point

Pivoting example

Boundary edge

Frozen edge
\qquad

$\xrightarrow{\text { Active edge }}$
Ball pivoting around active edge

- Point on front
- Internal point

Ball Pivoting Algorithm

Ball Pivoting Algorithm

Implicit Representation

Another option is representing a 3D model by an implicit function for:

- Reconstruction
- Fluid Dynamics
- 3D Texturing

Kazhdan 2005

Implicit Function Fitting

Given point samples:

- Define a function with value zero at the points.
- Extract the zero isosurface.

Sample points

Triangulation Complexity (in general)

- Theorem: (Gary et. al. 1978) A simple n-vertex polygon can be triangulated in $\mathrm{O}(\mathrm{nlogn})$ time and $O(n)$ storage
- The problem has been studied extensively between 1978 and 1991, when in 1991 Chazelle presented an $\underline{O(n)}$ time complexity algorithm.

Delaunay Triangulation

- Another very popular algorithm...
- But first, Voronoi Diagrams...
- Relevant Conversation:
- Captain Kirk: "Spock! Which tricorder tower (i.e., cell phone) should I be using?"
- Commander Spock: "Logically, the closest one, Jim."
- How do you do that?

Where to place cell phone towers? or Which cell phone tower should I use?

Cell phone towers

$$
P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \text { a set of } n \text { points in the plane. }
$$

Voronoi Diagram

$P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ a set of n points in the plane.

Voronoi Diagram:

Voronoi(P): \# regions $=n$, \# edges $\leq 3 n-6, \#$ vertices $\leq 2 n-5$.

Delaunay Triangulation = Dual of the Voronoi Diagram

DT(P): \# vertices = n, \# edges $\leq 3 n-6, ~ \#$ triangles $\leq 2 n-5$.

Delaunay Triangulation

Delaunay triangles have the "empty circle" property.

Voronoi Diagram and Delaunay Triangulation

VD Properties

- Each Voronoi region $\mathrm{V}\left(\mathrm{p}_{\mathrm{i}}\right)$ is a convex polygon (possibly unbounded).
- $V\left(p_{i}\right)$ is unbounded $\Leftrightarrow p_{i}$ is on the boundary of $\mathrm{CH}(P)$.
- Consider a Voronoi vertex $\mathrm{v}=\mathrm{V}\left(\mathrm{p}_{\mathrm{i}}\right) \cap \mathrm{V}\left(\mathrm{p}_{\mathrm{j}}\right) \cap \mathrm{V}\left(\mathrm{p}_{\mathrm{k}}\right)$.

Let $C(v)=$ the circle centered at v passing through p_{i}, p_{j}, p_{k}.

- $C(v)$ is circumcircle of Delaunay Triangle (p_{i}, p_{j}, p_{k}).
- $C(v)$ is an empty circle, i.e., its interior contains no other sites of P.

Voronoi Regions in Nature

Computing Delaunay Triangulation

- Many algorithms: O(nlogn)
- Lets use flipping:
- Recall: A Delaunay Triangulation is a set of triangles T in which each edge of T possesses at least one empty circumcircle.
- Empty: A circumcircle is said to be empty if it contains no nodes of the set V

What is a flip?

A non-Delaunay edge flipped

Flip Algorithm

- ??

Flip Algorithm

1. Let V be the set of input vertices.
2. $\mathrm{T}=$ Any Triangulation of V .
3. Repeat until all edges of T are Delaunay edges.
a. Find a non-delaunay edge that is flippable b. Flip

Naïve Complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Locally Delaunay \rightarrow Globally Delaunay

- If T is a triangulation with all its edges locally Delaunay, then T is the Delaunay triangulation.
- Proof by contradiction:
- Let all edges of T be locally Delaunay but an edge of T is not Delaunay, so flip it...

Flipping

- Other flipping ideas?

Randomized Incremental Flipping

- Complexity can be O(nlogn)

Fortune’s Algorithm

- "A sweepline algorithm for Voronoi "Algorithms", 1987, O(nlogn) https://www.youtube.com/watch?v=k2P9yWSMaXE Pseudocode:

```
add a site event in the event queue for each site
while the event queue is not empty
    pop the top event
    if the event is a site event
                            insert a new arc in the beachline
    check for new circle events
else
        create a vertex in the diagram
        remove the shrunk arc from the beachline
        delete invalidated events
        check for new circle events
```


Wave Propagation View

 waves.

Let Time be the $3^{\text {rd }}$ Dimension

All sites have identical opaque cones.

Let Time be the $3^{\text {rd }}$ Dimension

All sites have identical opaque cones.
cone $(p) \cap$ cone $(q)=$ vertical hyperbola $h(p, q)$.
vertical projection of $h(p, q)$ on the $x y$ base plane is $P B(p, q)$.

Voronoi Diagrams

- http://alexbeutel.com/webgl/voronoi.html

Voronoi Diagram

- http://www.raymondhill.net/voronoi/rhill-voronoi-demo5.html

Examples Triangulations

And Beyond...

- Not "relaxation" but more general:
- Recall: Reaction Diffusion
- https://pmneila.github.io/jsexp/grayscott/
- Textures:

