Global Illumination

CS334

Daniel G. Aliaga
Department of Computer Science
Purdue University

Recall: Lighting and Shading

- Light sources
- Point light
- Models an omnidirectional light source (e.g., a bulb)
- Directional light
- Models an omnidirectional light source at infinity
- Spot light
- Models a point light with direction
- Light model
- Ambient light
- Diffuse reflection
- Specular reflection

Recall: Lighting and Shading

- Diffuse reflection
- Lambertian model

Recall: Lighting and Shading

- Specular reflection
- Phong model

Recall: Lighting and Shading

- Well....there is much more

For example...

- Reflection -> Bidirectional Reflectance Distribution Functions (BRDF)
- Diffuse, Specular -> Diffuse Interreflection, Specular Interreflection
- Color bleeding
- Transparency, Refraction
- Scattering
- Subsurface scattering
- Through participating media
- And more!

Illumination Models

- So far, you considered mostly local (direct) illumination
- Light directly from light sources to surface
- No shadows (actually is a global effect)
- Global (indirect) illumination: multiple bounces of light
- Hard and soft shadows
- Reflections/refractions (you kinda saw already)
- Diffuse and specular interreflections

Welcome to Global Illumination

- Direct illumination + indirect illumination; e.g.
- Direct = reflections, refractions, shadows, ...
- Indirect $=$ diffuse and specular inter-reflection, ...

only diffuse inter-reflection

Global Illumination

- Direct illumination + indirect illumination; e.g. - Direct = reflections, refractions, shadows, ...
- Indirect $=$ diffuse and specular inter-reflection, ...

Reflectance Equation

- Lets start with the diffuse illumination equation and generalize...
- Define the all encompassing reflectance equation...
- Then specialize to the subset called the rendering equation...

Reflectance Equation

diffuse_illumination =
0
$+$
I_{L}
$K_{D} \quad l \cdot n$

Reflectance Equation

diffuse_illumination =
0
$+\quad I_{L}$
$K_{D} \quad l \cdot n$

Reflectance Equation

$$
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+L_{i}\left(x, \omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right)\left(\omega_{i} n\right)
$$

diffuse_illumination =
$0+I_{L}$
K_{D}
$l \cdot n$

Reflectance Equation

$$
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+L_{i}\left(x, \omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right)\left(\omega_{i} \bullet n\right)
$$

Reflected Light
Emission
Incident
BRDF
Cosine of (Output Image) Light (from Incident angle light source)

Reflectance Equation

Sum over all light sources

$$
\begin{array}{ll}
\qquad L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+ & \sum_{i}\left(x, \omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right)\left(\omega_{i} \bullet n\right) \\
\text { Reflected Light Emission } \quad \text { Incident BRDF } \quad \text { Cosine of } \\
\text { (Output Image) } & \text { Light (from } \\
\text { light source) } & \text { Incident angle }
\end{array}
$$

Reflectance Equation

Replace sum with integral

$$
\begin{aligned}
& \qquad L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{i}\left(x, \omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i} \\
& \text { Reflected Light Emission } \begin{array}{l}
\text { Incident } \quad \text { BRDF } \\
\text { (Output Image) }
\end{array} \quad \begin{array}{l}
\text { Light (from } \\
\text { light source) }
\end{array} \\
& \text { Incident angle }
\end{aligned}
$$

Reflectance Equation

$$
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{i}\left(x, \omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}
$$

$$
\begin{gathered}
\text { The Challenge } \\
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{i}\left(x, \omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}
\end{gathered}
$$

- Computing reflectance equation requires knowing the incoming radiance from surfaces
- ...But determining incoming radiance requires knowing the reflected radiance from surfaces

Global Illumination
Surfaces (interreflection)

$$
\begin{aligned}
& \qquad L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i} \\
& \text { Reflected Light Emission } \begin{array}{l}
\text { Reflected } \\
\text { (Output Image) }
\end{array} \quad \begin{array}{l}
\text { Light (from } \\
\text { prev surface) }
\end{array}
\end{aligned}
$$

Rendering Equation (Kajiya 1986)

Figure 6. A sample image. All objects are neutral grey. Color on the objects is due to caustics from the green glass balls and color bleeding from the base polygon.

Rendering Equation
Surfaces (interreflection)

$$
\begin{array}{lllll}
\qquad L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} & L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i} \\
\text { Reflected Light } & \text { Emission } & \text { Reflected } & \text { BRDF } & \text { Cosine of } \\
\text { (Output Image) } & & \text { Light } & & \text { Incident angle } \\
\text { UNKNOWN } & \text { KNOWN } & \text { UNKNOWN KNOWN } & \text { KNOWN }
\end{array}
$$

Rendering Equation

$$
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}
$$

Reflected Light	Emission	Reflected	BRDF	Cosine of (Output Image)
UNKNOWN	KNOWN	Light		Incident angle
UNKOWN	KNOWN	KNOWN		

After applying to simple math and simplifications, it turns we can approximately express the above as

$$
L=E+K L
$$

L, E are vectors,
K is the light transport matrix

Rendering as a Linear Operator...

(Two bounce indirect) [Caustics, etc...]

Ray Tracing
(Two bounce indirect) [Caustics, etc...]

Example

Example

Example

Example

Figure 6: Inverse light transport applied to images I captured under unknown illumination conditions. I is decomposed into direct illumination I^{1} and subsequent n-bounce images I^{n}, as shown. Observe that the interreflections have the effect of increasing brightness in concave (but not convex) junctions of the "M". Image intensities are scaled linearly, as indicated.

Figure 9: Inverse light transport applied to images captured under unknown illumination conditions: input images I are decomposed into direct illumination $I^{1}, 2$ - to 5-bounce images $I^{2}-I^{5}$, and indirect illuminations $I-I^{1}$.

Rendering Equation and Global Illumination Topics

- Local-approximations to Global Illumination
- Diffuse/Specular
- Ambient Occlusion
- Global Illumination Algorithms
- Ray tracing
- Path tracing
- Radiosity
- Bidirectional Reflectance Distribution Functions (BRDF)

Rendering Equation and Global Illumination Topics

- Local-approximations to Global Illumination
- Diffuse/Specular
- Ambient Occlusion
- Global Illumination Algorithms
- Ray tracing
- Path tracing
- Radiosity
- Bidirectional Reflectance Distribution

Functions (BRDF)

Ambient Occlusion

- It is a lighting technique to increase the realism of a 3D scene by a "cheap" imitation of global illumination

History

- In 1998, Zhukov introduced obscurances in the paper "An Ambient Light IlluminationModel."
- The effect of obscurances : we just need to evaluate the hiddenness or occlusion of the point by considering the objects around it.

Occlusion Factor/Map

- Shooting rays outwards
- Determine the occlusion factor at p as a percentage; e.g., occ $(p) \in[0,1]$

Ambient Occlusion in a Phong Illumination Model

$$
\begin{aligned}
& I=I_{a}+I_{d}+I_{s} \\
& I_{a}=I A \cdot \operatorname{occ}(p)
\end{aligned}
$$

Modulate the intensity by an occlusion factor

Inside-Looking-Out Approach: Ray Casting

- Cast rays from \boldsymbol{p} in uniform pattern across the hemisphere.
- Each surface point is shaded by a ratio of ray intersections to number of original samples.
- Subtracting this ratio from 1 gives us dark areas in the occluded portions of the surface.

$$
\begin{gathered}
\text { e.g.: Cast } 13 \text { rays } \\
9 \text { intersections, so } \\
\text { occ }(p)=?
\end{gathered}
$$

Inside-Looking-Out Approach: Ray Casting

- Cast rays from \boldsymbol{p} in uniform pattern across the hemisphere.
- Each surface point is shaded by a ratio of ray intersections to number of original samples.
- Subtracting this ratio from 1 gives us dark areas in the occluded portions of the surface.

$$
\begin{gathered}
\text { e.g.: Cast } 13 \text { rays } \\
9 \text { intersections, so } \\
\text { occ }(p)=4 / 13 ; \\
\Rightarrow \text { Color } * 4 / 13
\end{gathered}
$$

Inside-Looking-Out Approach: Hardware Rendering

- Render the view at low-res from \boldsymbol{p} toward normal \boldsymbol{N}
- Rasterize black geometry against a white background
- Take the (cosine-weighted) average of rasterized fragments.

11 black fragments
\Rightarrow Color * 14/25

Comments

- Potentially huge pre-computation time per scene
- Stores occlusion factor as vertex attributes
- Thus needs a dense sampling of vertices
- Variations on sampling method
- "Inside-out" algorithm
- "outside-in" alternative (not explained)

Outside-Looking-In Approach

- What would you do?

Outside-Looking-In: One option is [Sattler et. al 2004]
\square visibility
matrix $\rightarrow M_{i j}$

enable orthographic projection
disable framebuffer
for all light directions j do
set camera at light direction l_{j}
render object into depth buffer with polygon offset
for all vertices i do
begin query i
render vertex i
end query i
end for
for all vertices i do
retrieve result from query i
if result is "visible" then

$$
M_{i j}=\mathbf{n}_{i} \cdot \mathbf{l}_{j}
$$

end if
end for
end for
$M_{i j}=\left\{\begin{array}{rll}\mathbf{n}_{i} \cdot \mathbf{l}_{j} & : & \text { vertex visible } \\ 0 & : & \text { vertex invisible }\end{array}\right.$
$c_{i}=\sum_{j=1}^{k} M_{i j} I_{j}$

[Sattler et al. 2004]

- For each light on the light sphere
- Take the depth map (for occlusion query)
- Use occlusion query to determine the visibility matrix

Another option: Screen-Based AO

- SHANMUGAM, P., AND ARIKAN, O. 2007. Hardware Accelerated Ambient Occlusion Techniques on GPUs. In Proceedings of ACM Symposium in Interactive 3D Graphics and Games, ACM.

Screen-Based AO

Screen-Based AO

- What would you do?

Rendering Equation and Global Illumination Topics

- Local-approximations to Global Illumination
- Diffuse/Specular
- Ambient Occlusion
- Global Illumination Algorithms
- Ray tracing
- Path tracing
- Radiosity
- Bidirectional Reflectance Distribution

Functions (BRDF)

Radiosity

- Radiosity, inspired by ideas from heat transfer, is an application of a finite element method to solving the rendering equation for scenes with purely diffuse surfaces.
- The main idea of the method is to store illumination values on the surfaces of the objects, as the light is propagated starting at the light sources.

Radiosity

- Calculating the overall light propagation within a scene, for short global illumination is a very difficult problem.
- With a standard ray tracing algorithm, this is a very time consuming task, since a huge number of rays have to be shot.

Radiosity (Computer Graphics)

- Assumption \#1: surfaces are diffuse emitters and reflectors of energy, emitting and reflecting energy uniformly over their entire area.
- Assumption \#2: an equilibrium solution can be reached; that all of the energy in an environment is accounted for, through absorption and reflection.
- Also viewpoint independent: the solution will be the same regardless of the viewpoint of the image.

Radiosity

- Equation:

$$
B_{i}=E_{i}+\rho_{i} \sum B_{j} F_{i j}
$$

The Radiosity Equation

The Radiosity Equation

The Radiosity Equation

$$
B_{i}=E_{i}+\rho_{i} \sum B_{j} F_{i j}
$$

Energy reaching surface i from other surfaces

Surface j

The Radiosity Equation

$$
B_{i}=E_{i}+\rho_{i} \sum B_{j} F_{i j}
$$

Energy reflected by surface i

Classic Radiosity Algorithm

Mesh Surfaces into Elements

Compute Form Factors Between Elements
\sqrt{n}

Solve for Radiosities

Reconstruct and Display Solution

Solving for radiosity solution

- The "Full Matrix" Radiosity Algorithm
- Gathering \& Shooting

Radiosity Matrix

$$
B_{i}=E_{i}+\rho_{i} \sum_{j=1}^{n} F_{i j} B_{j}
$$

What is the matrix form?
(like "Ax=b")
$B_{i}-\rho_{i} \sum_{j=1}^{n} F_{i j} B_{j}=E_{i}$

Radiosity Matrix

$$
B_{i}=E_{i}+\rho_{i} \sum_{j=1}^{n} F_{i j} B_{j}
$$

$$
B_{i}-\rho_{i} \sum_{j=1}^{n} F_{i j} B_{j}=E_{i}
$$

$$
\left[\begin{array}{cccc|}
1-\rho_{1} F_{11} & -\rho_{1} F_{12} & \cdots & -\rho_{1} F_{1 n} \\
-\rho_{2} F_{21} & 1-\rho_{2} F_{22} & \cdots & -\rho_{2} F_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
-\rho_{n} F_{n 1} & -\rho_{n} F_{n 2} & \cdots & 1-\rho_{n} F_{n n}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{n}
\end{array}\right]
$$

Radiosity Matrix

- The "full matrix" radiosity solution calculates the form factors between each pair of surfaces in the environment, then forms a series of simultaneous linear equations.

$$
\left[\begin{array}{cccc}
1-\rho_{1} F_{11} & -\rho_{1} F_{12} & \cdots & -\rho_{1} F_{1 n} \\
-\rho_{2} F_{21} & 1-\rho_{2} F_{22} & \cdots & -\rho_{2} F_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
-\rho_{n} F_{n 1} & -\rho_{n} F_{n 2} & \cdots & 1-\rho_{n} F_{n n}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{n}
\end{array}\right]
$$

- This matrix equation is solved for the "B" values, which can be used as the final intensity (or color) value of each surface.

Solving for radiosity solution

- The "Full Matrix" Radiosity Algorithm
- Gathering \& Shooting

Gathering

- In a sense, the light leaving patch i is determined by gathering in the light from the rest of the environment

$$
B_{i}=E_{i}+\rho_{i} \sum_{j=1}^{n} B_{j} F_{i j}
$$

B_{i} due to $B_{j}=\rho_{i} B_{j} F_{i j}$

GATHERING

Gathering

- Gathering light through a hemi-cube allows one patch radiosity to be updated.

Gathering

$$
\left.\begin{array}{l}
\text { for }(i=0 ; i<n ; i++) \\
\quad B[i]=B e[i] ; \\
\text { while (!converged) } \\
\quad \text { for (i=0; i<n; i++) } \\
\quad E[i]=0 ; \\
\quad \text { for }(j=0 ; j<n ; j++) \\
\quad E[i]+=F[i][j] * B[j] ; \\
B[i]=B e[i]+r h o[i] * E[i] ;
\end{array}\right\}
$$

Row of F times B
Calculate one row of F and discard

Successive Approximation

L_{e}

$L_{e}+K \circ L_{e}$
$L_{e}+\cdots K^{2} \circ L_{e}$
$L_{e}+\cdots K^{3} \circ L_{e}$

Shooting

- Shooting light through a single hemi-cube allows the whole environment's radiosity values to be updated simultaneously.

For all $j \longmapsto B_{j}=B_{j}+B_{i}\left(\rho_{j} E_{j i}\right)$
where $F_{j i}=\frac{F_{i j} A_{i}}{A_{j}}$

Shooting

```
for(i=0; i<n; i++) {
    B[i] = dB[i] = Be[i];
    while( !converged ) {
            set i st dB[i] is the largest;
            for(j=0;j<n;j++)
            if(i!=j) {
            db =rho[j]*F[j][i]*dB[i];
            dB[j] += db;
            B[j] += db;
            }
    dB[i]=0;
}
```

Brightness order
Column of F times B

Artifacts

A. Blocky shadows
B. Missing features
C. Mach bands
D. Inappropriate shading discontinuities
E. Unresolved discontinuities

What can you do?

Increase Resolution

Adaptively Mesh

e.g., Discontinuity Meshing

More examples...

Rendering Equation and Global Illumination Topics

- Local-approximations to Global Illumination
- Diffuse/Specular
- Ambient Occlusion
- Global Illumination Algorithms
- Ray tracing
- Path tracing
- Radiosity
- Bidirectional Reflectance Distribution Functions (BRDF)

Measuring BRDFs

- BRDF is 4-dimensional, though simpler measurements (0D/1D/2D/3D) are often useful

Measuring Reflectance

$$
11
$$

$0 \% / 45^{\circ}$
Diffuse Measurement

$45^{\circ} / 45^{\circ}$
Specular Measurement

Gloss Measurements

- "Haze" is the width of a specular peak

BRDF Measurements

- Next step up: measure over a 1- or 2-D space

Gonioreflectometers

- Or a 4D space

Image-Based BRDF Measurement

- A camera acquires with each picture a 2D image of sampled measurements
- Requires mapping light angles to camera pixels

Ward's BRDF Measurement Setup

Half-silvered

Ward's BRDF Measurement Setup

- Each picture captures light from a hemisphere of angles

Measurement

- 20-80 million reflectance measurements per material
- Each tabulated BRDF entails
$90 \times 90 \times 180 \times 3=4,374,000$ measurement bins

