
Deep Visual Computing –
A Primer

Daniel G. Aliaga

Fall 2023

Deep Visual Computing

• Since the beginning, it turns out visual computing and machine
learning have been deeply connected

• Do you know why?

• Lets see… (get it: lets “see”)

A long time ago in a computer far, far

inferior to your phone, it all began…

 -Daniel Aliaga, August 25, 2020

Logic Theorist (1956)

• A program designed to mimic the problem solving skills of a human

• From 1957-1974, AI flourished and failed and flourished…

• In 1968, A. Clarke and S. Kubrik said “by the year 2001 we will have
machines with intelligence that matches or exceeded humans’s”

• In 1970, Marvin Minsky (MIT) said that in 3-8 years “we will have a
machine with the general intelligence of an average human being”

AI Timeline

1980s

• Expert systems became popular: dedicated systems

• “Deep learning techniques” was a coined phrase but with diverse
meanings…

• I was around then, and even a paid undergraduate researcher in a
major AI lab

- our job was to create a robot that could be programmed remotely and could
execute algorithms for navigating and deciding how to avoid obstacles (e.g.,
walls and boxes)

Deep Learning Timeline

(Single Layer) Perceptron

• The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain, F. Rosenblatt, Psychological Review, 65(6),
1958.

• Model based on the human visual system

Biology 101

• In human brain:
• Neuron switching time

 ~ 0.001 second

• Number of neurons

 ~ 1010

• Connections per neuron

 ~ 104-5

• Scene recognition time

 ~ 0.1 second

• Huge amount of parallel computation
→ 100 inference steps is not enough

© Eric Xing @ CMU, 2006-2011

From Biology to Computers…

• Biology Perceptron

• Activation function

© Eric Xing @ CMU, 2006-2011 10

Soma Soma

Synapse

Synapse

Dendrites

Axon

Synapse

Dendrites

Axon

Threshold

Inputs

x1

x2

Output

Y

Hard

Limiter

w2

w1

Linear

Combiner

=

=
n

i

iiwxX

1

−

+
=

X

X
Y

 if ,

 if ,

1

1

Perceptron

Perceptron

𝑥0 𝑝

𝑦 = 𝑚𝑥 + 𝑏

𝑦0

Example: 𝑏 = 0, 𝑚 = 1 →

𝑥

𝑦

𝑦 = 𝑥

Perceptron

𝑥0 𝑝

𝑦 = 𝑚𝑥 + 𝑏

𝑦0

Activation Function

Activation Functions

𝑥

𝑦

Linear

NOTE: ReLU = Rectified Linear Unit, ELU = Exponential Linear Unit

Multilayer Perceptron

𝑥 𝑝0

ℎ = 𝑚0𝑥 + 𝑏0

𝑦

Example: b0 = b1 = 0, 𝑚0 = 𝑚1 = 0.5 →

𝑥

𝑦

𝑝1

𝑦 = 𝑚1ℎ + 𝑏1

𝑦 = 𝑚1(𝑚0𝑥 + 𝑏0) + 𝑏1

𝑦 = 0.25𝑥

Multilayer Perceptron

𝑥 𝑝0

ℎ = 𝑚0𝑥 + 𝑏0

𝑦

Example: b0 = b1 = 0, 𝑚0 = 2, 𝑚1 = 1

𝑝1

𝑦 =
1

1 + 𝑒−𝑚1(ℎ+𝑏1)

𝑦 =
1

1 + 𝑒−2𝑥

𝑦

𝑥

Intuitively: y will
be “high” for
smaller values of x

Example: b0 = b1 = 0, 𝑚0 = 0.5, 𝑚1 = 1

𝑦 =
1

1 + 𝑒−0.5𝑥

𝑦

𝑥

Intuitively: y will
be “high” for
larger values of x

Multilayer Perceptron

x

y

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

Layer 1
Node Bias x-Weight y-Weight

0 -0.375 -3 1

1 -0.125 0 1

2 -0.375 3 1

3 0.125 -0.75 1

4 0.125 0.75 1

Layer 2
From Node Bias Weight

0 -0.2 1

1 -0.2 1

2 -0.2 1

3 -0.2 1

4 -0.2 1

(Sigmoid activation functions)

Rounded to 0
or 1

Star Classifier: https://www.cs.utexas.edu/~teammco/misc/mlp

https://www.cs.utexas.edu/~teammco/misc/mlp/

Perceptron

Perceptrons

• Book by M. Minsky and S. Papert (1969)

• Was actually “An Introduction to Computational Geometry” – thus
visual as well

• Commented on the limited ability of perceptrons and on the difficulty
in training multi-layer perceptrons

• (Back propagation appeared in 1986 and helped a lot!)

Reprise: Computer Vision

• In 1959, Russell Kirsch and colleagues developed an image scanner:
transform an image into a grid of numbers so that a machine can
understand it!

• One of the first scanned images:
 (176x176 pixels)

2010

• ImageNet Large Scale Visual Recognition Competition (ILSVRC) runs
annually

• 2010/2011: error rates were around 26%

• 2012: the beginning of a new beginning – AlexNet – reduced errors to 16%!

AlexNet

• University of Toronto created a CNN model (AlexNet) that changed
everything (Krizhevsky et al. 2012)

ILSVRC (2011-2017)

ILSVRC (2010-2017)

Reprise: Computer Graphics

• First graphics visual image:
• Ben Laposky used an oscilloscope in 1950s

(note: one of my undergrad senior

projects was an oscilloscope based

graphics engine)

Whirlwind Computer @ MIT

• Video display of real-time data:

1960s

• Ivan Sutherland used vector displays (=oscilloscope), light pens, and
interaction

1965: The Ultimate Display…

• Fred Brooks using one of Ivan’s displays….the birth of VR/AR

• NOTE: Fred Brooks was on my PhD committee, I worked in his research
group and my MS and PhD revolved around VR/AR and graphics.

Deep Learning in Computer Graphics

• Like in computer vision, since 2010’ish deep learning has
revolutionized computational imaging and computational
photography, rendering, and more

• However, hand-crafted methods have significantly improved other
domains such as geometry processing, rendering and animation,
video processing, and physical simulations

Basic Machine Learning Recipe

1. Obtain training data

2. Choose decision and loss functions

3. Define goal

4. Optimize!

1. Training Data

𝑥𝑖 , 𝑦𝑖 for i ∈ [1, 𝑁]

Fundamental categories:

1. Synthetic data

2. Real data (annotated)

3. Real data (unannotated) <- tricky!

Properties:

1. Data should span/populate the distribution of expected input values

2. Data should be plenty – kinda same as above

3. Data should have low errors/noise (ideally)

2. Decision and Loss Functions

ො𝑦 = f𝜃(xi)

The function you wish to “decide” that given the inputs, and the
parameters 𝜃, yields an output ො𝑦 that is equal or close to desired values;
thus, you seek

𝑙 ො𝑦, 𝑦𝑖 → 0

Properties:
1. Decision should be “doable” so that convergence is possible
2. Loss function should exploit as much as possible of domain

knowledge

3. Define (Training) Goal

𝜃∗ = argmin
𝜃

𝑖=1

𝑁

𝑙(𝑓𝜃 𝑥𝑖 , 𝑦𝑖)

Define a function to find parameters 𝜃∗ that minimize the loss function
for the entire training data set; i.e., find network weights and biases
that make the network “learn” the desired (high-dimensional) function

4. Optimize!

• Perform small steps (opposite the gradient)…

𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝑡𝛻𝑙 f𝜃 𝑥𝑖 , 𝑦𝑖

Move a small step against the gradient to eventually

reach a set of network parameters that minimize the

loss function

4. Optimize!

• Methods:
• Stochastic Gradient Descent (SGD),

• Adam, or

• Others

• Adam: an adaptive moment
estimation based optimization – the
learning rate changes during the
optimization [Kingma and Ba, 2015]

Multilayer Perceptron: Fully Connected

• Fully Connected (FC) Network has lots of weights and biases to learn
• 1 MP image has 𝐿𝑥1012 parameters for 𝐿 layers (or several billion

parameters)

https://towardsdatascience.com/the-
mostly-complete-chart-of-neural-
networks-explained-3fb6f2367464

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Can we reduce the number of parameters to
learn with our training data?
• Yes! Convolutional Neural Networks (CNN)

• Uses:
• Spatial locality

• Kernel reuse

• Weight sharing

• Example result:
• Instead of “billions of parameters”, using 100 kernels of 10x10 pixels with weight sharing

needs only 10,000 parameters

(Image) Convolution

Fully Connected
Feedforward network

input image

Convolution

Max Pooling

Convolution

Max Pooling

Flattened

Can

repeat

many

times

cat, dog, etc.

CNN

[Slides based on Ming Li, U. Waterloo]

CNN: Convolution Layer

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2
……

These are the network

parameters to be learned.

Each filter detects a

small pattern (3 x 3). [Slides based on Ming Li, U. Waterloo]

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1

CNN: Convolution Layer

[Slides based on Ming Li, U. Waterloo]

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Repeat this for some number of filters
stride=1

Two 4 x 4 images

Forming 2 x 4 x 4 matrix

Feature
Map

CNN: Convolution Layer

[Slides based on Ming Li, U. Waterloo]

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

CNN: Max Pooling

[Slides based on Ming Li, U. Waterloo]

LeNet: a layered model composed of convolution and subsampling operations followed by a holistic representation and
ultimately a classifier for handwritten digits. [LeNet]

LeNet (1998)

• 32x32 image using CPU

AlexNet (2012) -- diagrammatic

AlexNet: First Convolution Layer

Comparison

LeNet

• 32*32*1

• 7 layers

• 2 conv and 4 classification

• 60 thousand parameters

• Only two complete convolutional
layers
• Conv, nonlinearities, and pooling as one

complete layer

AlexNet

• 224*224*3

• 8 layers

• 5 conv and 3 fully classification

• 5 convolutional layers, and 3,4,5 stacked
on top of each other

• Three complete conv layers

• 60 million parameters

• Since insufficient data, did data
augmentation:
• Patches (224 from 256 input), translations,

reflections
• PCA, simulate changes in intensity and colors

CNN Demo

• https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Autoencoder (AE)
Learn a data distribution for MNIST:

Decoder

Features
(Latent variables)

Encoder

Image Credit: Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov
[CreativeAI – SIGGRAPH Course]

AE Improvement: Variational Autoencoder

Autoencoder VAE

Image Credit: Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov[CreativeAI – SIGGRAPH Course]

Variational Autoencoder Latent Space

https://www.jeremyjordan.me/variational-autoencoders/[CreativeAI – SIGGRAPH Course]

Now, can ask for samples!

https://www.jeremyjordan.me/variational-autoencoders/[CreativeAI – SIGGRAPH Course]

Generative Adversarial Networks (GANs)
[Goodfellow et al. 2014]

Player 2: discriminator
Scores if it can distinguish
between real and fake

real/fake

from dataset

Player 1: generator
Scores if discriminator
can’t distinguish output
from real image

Image credit: A Style-Based Generator Architecture for Generative Adversarial Networks, Karras et al.[CreativeAI – SIGGRAPH Course]

Generative Adversarial Networks (GANs)

https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

[CreativeAI – SIGGRAPH Course]

GAN Information Flow

Example of the Progression in the Capabilities of GANs From
2014 to 2017. Taken from The Malicious Use of Artificial
Intelligence: Forecasting, Prevention, and Mitigation, 2018.

https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/[CreativeAI – SIGGRAPH Course]

https://arxiv.org/abs/1802.07228
https://arxiv.org/abs/1802.07228

Additional Tricks:

• Coarse-to-fine training

• Transformation of
to a more complex distr.

• ...

StyleGAN
content

st
yl

e

Image credit: A Style-Based Generator Architecture for Generative Adversarial Networks, Karras et al.[CreativeAI – SIGGRAPH Course]

StyleGAN

StyleGAN Demo

• https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/

Conditional GAN: Pix2Pix

Image-to-image Translation with Conditional Adversarial Nets
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. CVPR 2017

slide credit: Phillip Isola & Jun-Yan Zhu[CreativeAI – SIGGRAPH Course]

Edges → Images

Input Output Input Output Input Output

Edges from [Xie & Tu, 2015]

slide credit: Phillip Isola & Jun-Yan Zhu[CreativeAI – SIGGRAPH Course]

Sketches → Images

Input Output Input Output Input Output

Trained on Edges → Images
Data from [Eitz, Hays, Alexa, 2012]

slide credit: Phillip Isola & Jun-Yan Zhu[CreativeAI – SIGGRAPH Course]

Pix2Pix Demo

• https://affinelayer.com/pixsrv/

https://affinelayer.com/pixsrv/

• Create output step-by-step

• Each step depends on the output of all previous steps

Autoregressive Models

Chain rule of probability:

Video Credit: YouTube user karwan kalary, Bob Ross Time Lapse[CreativeAI – SIGGRAPH Course]

Autoregressive Models

Generator with
parameters

sam
p

le

Generator with
parameters

…
…

• In each step, the model outputs
a low-dimensional prob. distribution
(e.g. over intensity values for one pixel)

Sample?
Evaluate?

Video Credit: YouTube user karwan kalary, Bob Ross Time Lapse[CreativeAI – SIGGRAPH Course]

Autoregressive Models

Generator with
parameters

evalu
ate

Generator with
parameters

…
…

• In each step, the model outputs
a low-dimensional prob. distribution
(e.g. over intensity values for one pixel)

Sample?
Evaluate?

Image Credit: YouTube user karwan kalary, Bob Ross Time Lapse[CreativeAI – SIGGRAPH Course]

Example: PixelRNN and PixelCNN

• Recursive network that has an input and a state (LSTM)

• Only recent steps are used as input, the state summarizes older steps

[CreativeAI – SIGGRAPH Course]

Neural Reflectance Field (NERF)

• A neural radiance field (NeRF) is a fully-connected neural network
that can generate novel views of complex 3D scenes, based on a
partial set of 2D images

• (deep learning version of “Lightfields” – see other slides)

https://arxiv.org/abs/2003.08934

NERF

Other NERFs: https://datagen.tech/guides/synthetic-data/neural-radiance-field-nerf/

Instant-NERF: https://blogs.nvidia.com/blog/2022/03/25/instant-nerf-research-3d-ai/

https://datagen.tech/guides/synthetic-data/neural-radiance-field-nerf/
https://blogs.nvidia.com/blog/2022/03/25/instant-nerf-research-3d-ai/

Diffusion Models

• From noise to data…

• Four popular diffusion models:
• OpenAI’s Dall-E 2
• Google’s Imagen
• StabilityAI’s Stable Diffusion
• Midjourney

Diffusion Models

 [https://learnopencv.com/image-generation-using-diffusion-models/]

	Slide 1: Deep Visual Computing – A Primer
	Slide 2: Deep Visual Computing
	Slide 3
	Slide 4: Logic Theorist (1956)
	Slide 5: AI Timeline
	Slide 6: 1980s
	Slide 7: Deep Learning Timeline
	Slide 8: (Single Layer) Perceptron
	Slide 9: Biology 101
	Slide 10: From Biology to Computers…
	Slide 11: Perceptron
	Slide 12: Perceptron
	Slide 13: Perceptron
	Slide 14: Activation Functions
	Slide 15: Multilayer Perceptron
	Slide 16: Multilayer Perceptron
	Slide 17: Multilayer Perceptron
	Slide 18: Star Classifier: https://www.cs.utexas.edu/~teammco/misc/mlp
	Slide 19: Perceptron
	Slide 20: Perceptrons
	Slide 21: Reprise: Computer Vision
	Slide 22: 2010
	Slide 23: AlexNet
	Slide 24: ILSVRC (2011-2017)
	Slide 25: ILSVRC (2010-2017)
	Slide 26: Reprise: Computer Graphics
	Slide 27: Whirlwind Computer @ MIT
	Slide 28: 1960s
	Slide 29: 1965: The Ultimate Display…
	Slide 30: Deep Learning in Computer Graphics
	Slide 31: Basic Machine Learning Recipe
	Slide 32: 1. Training Data
	Slide 33: 2. Decision and Loss Functions
	Slide 34: 3. Define (Training) Goal
	Slide 35: 4. Optimize!
	Slide 36: 4. Optimize!
	Slide 37: Multilayer Perceptron: Fully Connected
	Slide 38
	Slide 39: Can we reduce the number of parameters to learn with our training data?
	Slide 40: (Image) Convolution
	Slide 41: CNN
	Slide 42: CNN: Convolution Layer
	Slide 43: CNN: Convolution Layer
	Slide 44: CNN: Convolution Layer
	Slide 45: CNN: Max Pooling
	Slide 46: LeNet (1998)
	Slide 47: AlexNet (2012) -- diagrammatic
	Slide 48: AlexNet: First Convolution Layer
	Slide 49: Comparison
	Slide 50: CNN Demo
	Slide 51: Autoencoder (AE)
	Slide 52
	Slide 53: Variational Autoencoder Latent Space
	Slide 54: Now, can ask for samples!
	Slide 55: Generative Adversarial Networks (GANs) [Goodfellow et al. 2014]
	Slide 56: Generative Adversarial Networks (GANs)
	Slide 57: GAN Information Flow
	Slide 58
	Slide 59: StyleGAN
	Slide 60: StyleGAN
	Slide 61: StyleGAN Demo
	Slide 62: Conditional GAN: Pix2Pix
	Slide 63: Edges → Images
	Slide 64: Sketches → Images
	Slide 65: Pix2Pix Demo
	Slide 66: Autoregressive Models
	Slide 67: Autoregressive Models
	Slide 68: Autoregressive Models
	Slide 69: Example: PixelRNN and PixelCNN
	Slide 70: Neural Reflectance Field (NERF)
	Slide 71: NERF
	Slide 72: Diffusion Models
	Slide 73: Diffusion Models

