

# Deep Visual Computing – A Primer

Daniel G. Aliaga Fall 2023

# **Deep Visual Computing**



- Since the beginning, it turns out visual computing and machine learning have been deeply connected
- Do you know why?
- Lets see... (get it: lets "see")



# A long time ago in a computer far, far inferior to your phone, it all began...

-Daniel Aliaga, August 25, 2020

# Logic Theorist (1956)

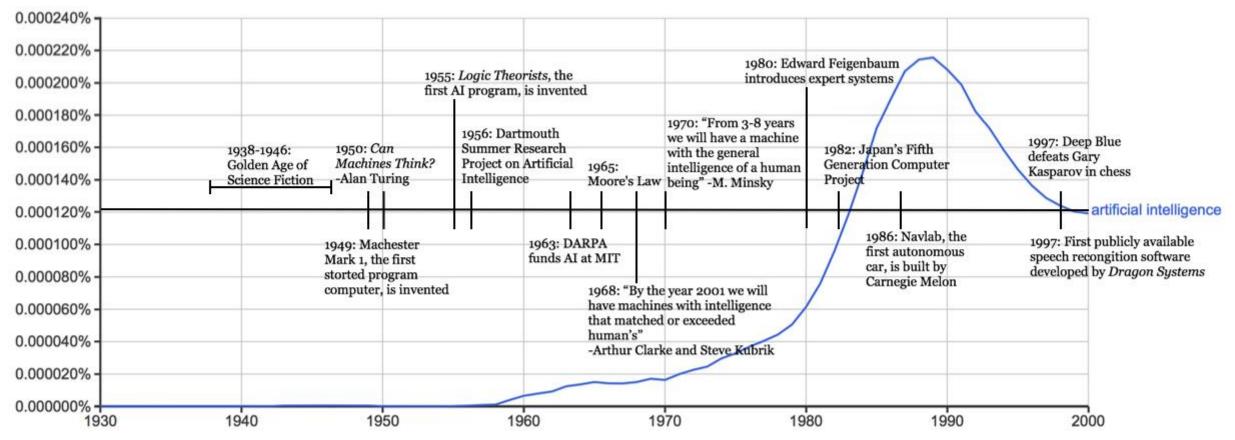


- A program designed to mimic the problem solving skills of a human
- From 1957-1974, AI flourished and failed and flourished...
- In 1968, A. Clarke and S. Kubrik said "by the year 2001 we will have machines with intelligence that matches or exceeded humans's"
- In 1970, Marvin Minsky (MIT) said that in 3-8 years "we will have a machine with the general intelligence of an average human being"

#### Al Timeline



#### ARTIFICIAL INTELLIGENCE TIMELINE



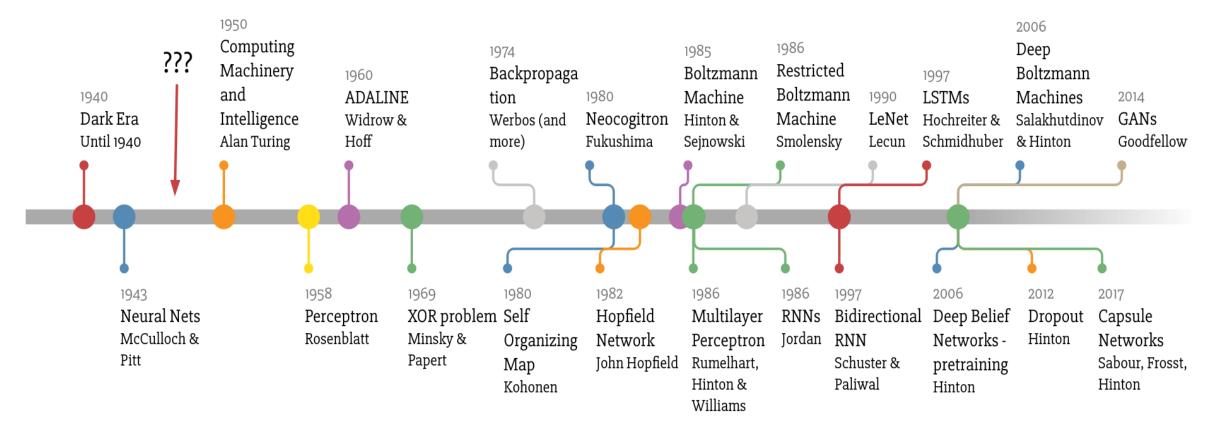


- Expert systems became popular: dedicated systems
- "Deep learning techniques" was a coined phrase but with diverse meanings...
- I was around then, and even a paid undergraduate researcher in a major AI lab

- our job was to create a robot that could be programmed remotely and could execute algorithms for navigating and deciding how to avoid obstacles (e.g., walls and boxes)

# Deep Learning Timeline





Made by Favio Vázquez

# (Single Layer) Perceptron



 The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain, F. Rosenblatt, Psychological Review, 65(6), 1958.

• Model based on the human visual system

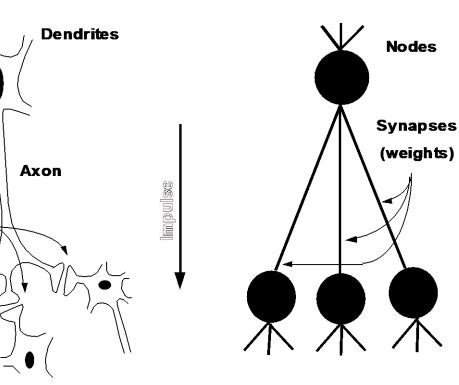


© Eric Xing @ CMU, 2006-2011

**Synapses** 

# Biology 101

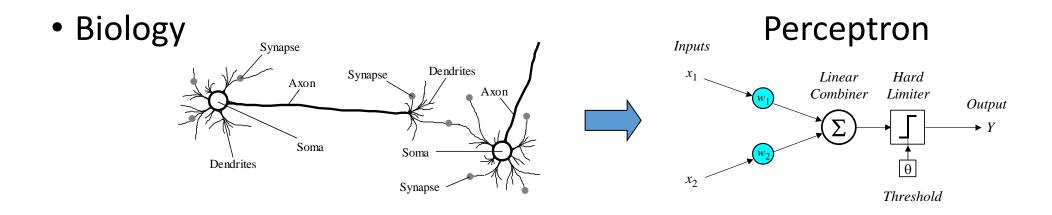
- In human brain:
  - Neuron switching time
    - ~ 0.001 second
  - Number of neurons
     ~ 10<sup>10</sup>
  - Connections per neuron
     ~ 10<sup>4-5</sup>
  - Scene recognition time
     ~ 0.1 second
  - Huge amount of parallel computation
    - ightarrow 100 inference steps is not enough





# From Biology to Computers...





Activation function

X<sub>2</sub>

X<sub>1</sub>

٠



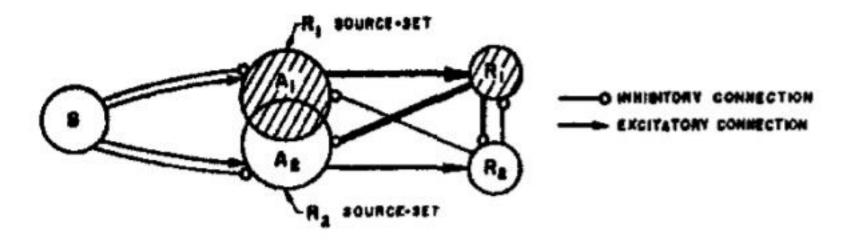
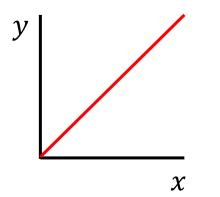


FIG. 2B. Venn diagram of the same perceptron  $(shading shows active sets for R_1 response).$ 

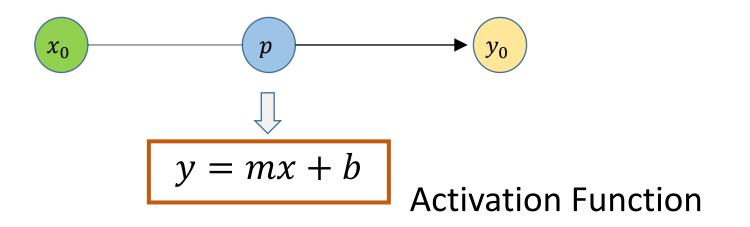




Example: 
$$b = 0, m = 1 \rightarrow y = x$$

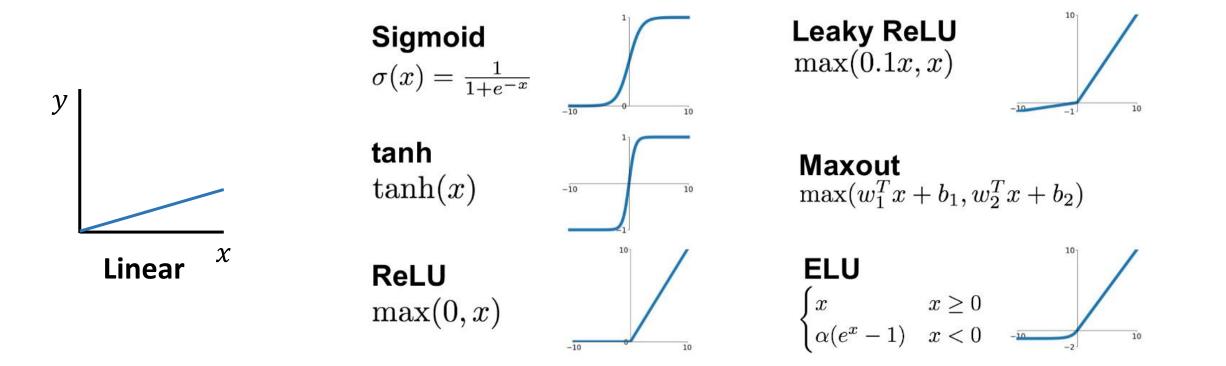






## Activation Functions

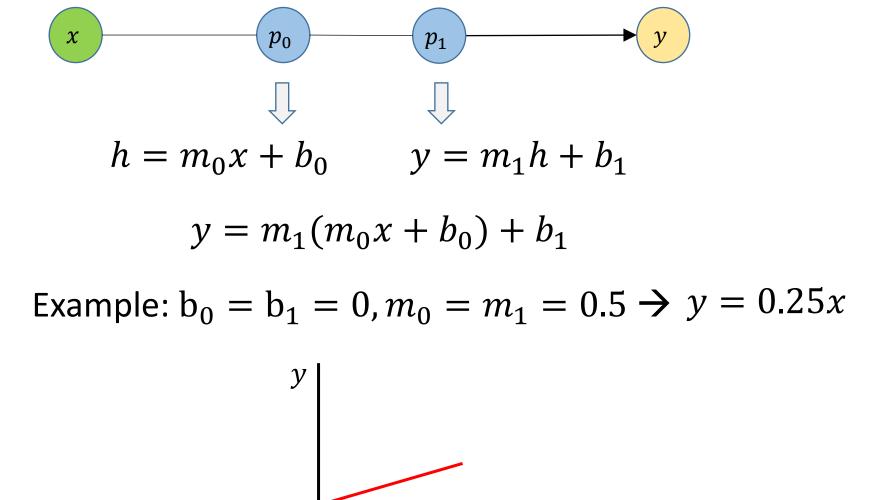




NOTE: ReLU = Rectified Linear Unit, ELU = Exponential Linear Unit

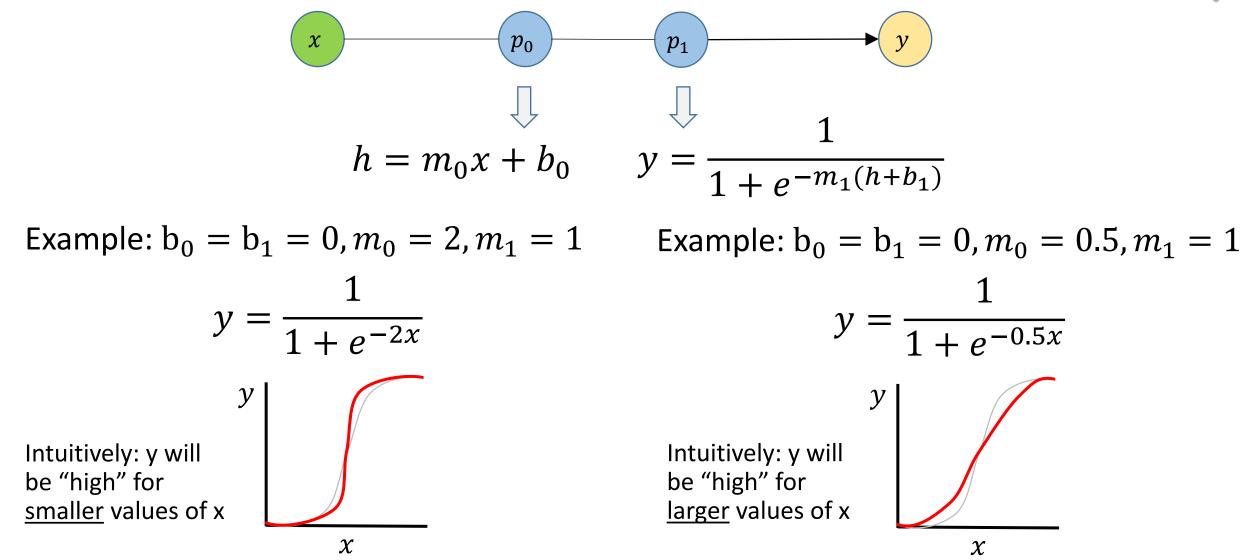


#### **Multilayer** Perceptron



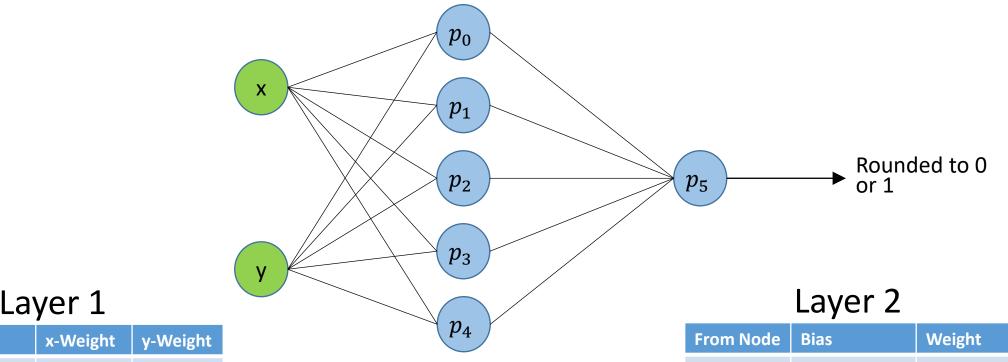


### Multilayer Perceptron



## Multilayer Perceptron





| lavor | 1 |
|-------|---|
| Layer | Т |

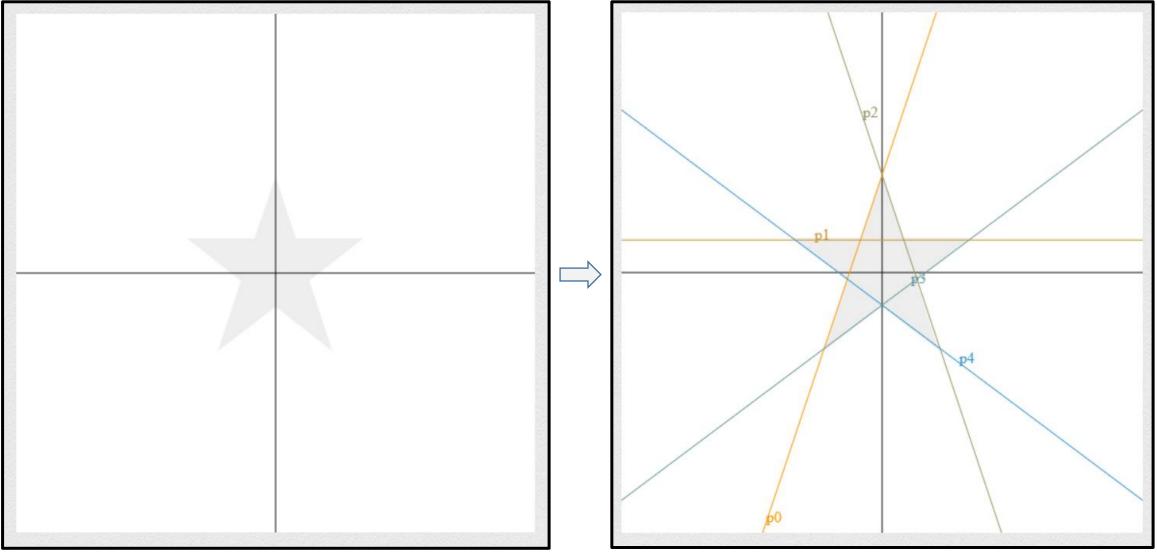
| Node | Bias   | x-Weight | y-Weight |
|------|--------|----------|----------|
| 0    | -0.375 | -3       | 1        |
| 1    | -0.125 | 0        | 1        |
| 2    | -0.375 | 3        | 1        |
| 3    | 0.125  | -0.75    | 1        |
| 4    | 0.125  | 0.75     | 1        |

(Sigmoid activation functions)

| From Node | Bias | Weight |
|-----------|------|--------|
| 0         | -0.2 | 1      |
| 1         | -0.2 | 1      |
| 2         | -0.2 | 1      |
| 3         | -0.2 | 1      |
| 4         | -0.2 | 1      |
|           |      |        |

#### Star Classifier: <a href="https://www.cs.utexas.edu/~teammco/misc/mlp">https://www.cs.utexas.edu/~teammco/misc/mlp</a>







Algorithm 1: Perceptron Learning Algorithm

```
Input: Training examples \{\mathbf{x}_i, y_i\}_{i=1}^m.
```

Initialize w and b randomly.

```
while not converged do
```

```
# # # Loop through the examples.

for j = 1, m do

# # # Compare the true label and the prediction.

error = y_j - \sigma(\mathbf{w}^T \mathbf{x}_j + b)

### If the model wrongly predicts the class, we update the weights and bias.

if error != 0 then

### Update the weights.

\mathbf{w} = \mathbf{w} + error \times x_j

### Update the bias.

b = b + error

Test for convergence
```

Output: Set of weights w and bias b for the perceptron.



- Book by M. Minsky and S. Papert (1969)
- Was actually "An Introduction to Computational Geometry" thus visual as well
- Commented on the limited ability of perceptrons and on the difficulty in training multi-layer perceptrons
- (Back propagation appeared in 1986 and helped a lot!)

## Reprise: Computer Vision



- In 1959, Russell Kirsch and colleagues developed an image scanner: transform an image into a grid of numbers so that a machine can understand it!
- One of the first scanned images: (176x176 pixels)



## 2010

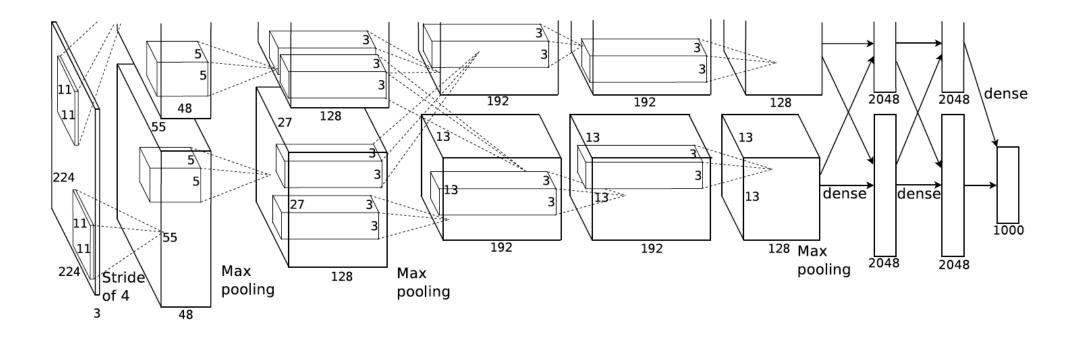


- ImageNet Large Scale Visual Recognition Competition (ILSVRC) runs annually
  - 2010/2011: error rates were around 26%
  - 2012: the beginning of a new beginning AlexNet reduced errors to 16%!

## AlexNet

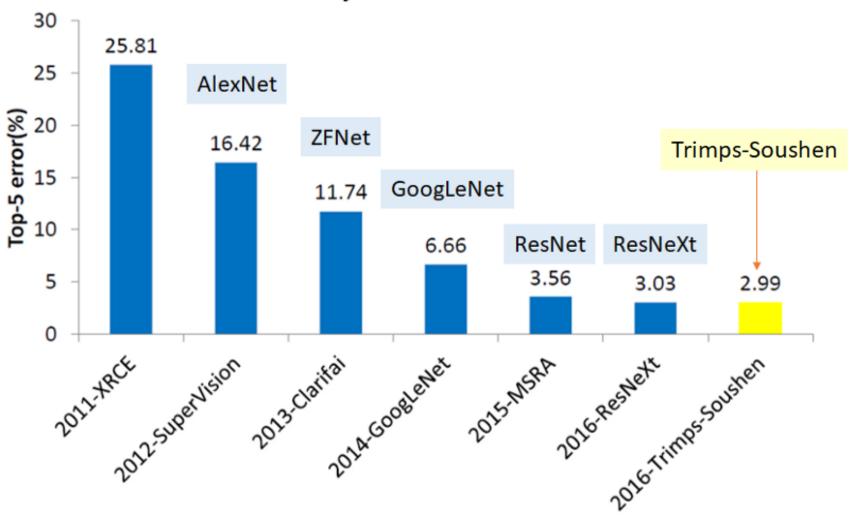


• University of Toronto created a CNN model (AlexNet) that changed everything (Krizhevsky et al. 2012)



#### ILSVRC (2011-2017)

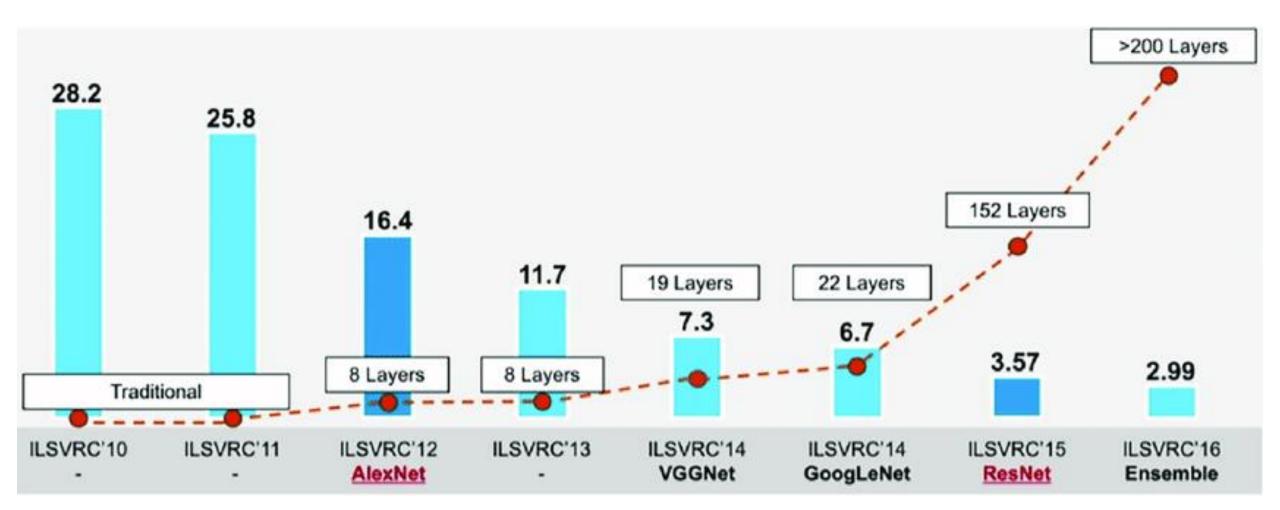




#### **Object Classification**



#### ILSVRC (2010-2017)



# Reprise: Computer Graphics

- First graphics visual image:
  - Ben Laposky used an oscilloscope in 1950s

(note: one of my undergrad senior projects was an oscilloscope based graphics engine)





# Whirlwind Computer @ MIT



• Video display of real-time data:



#### 1960s



 Ivan Sutherland used vector displays (=oscilloscope), light pens, and interaction



# 1965: The Ultimate Display...



• Fred Brooks using one of Ivan's displays....the birth of VR/AR



• NOTE: Fred Brooks was on my PhD committee, I worked in his research group and my MS and PhD revolved around VR/AR and graphics.



# Deep Learning in Computer Graphics

- Like in computer vision, since 2010'ish deep learning has revolutionized computational imaging and computational photography, rendering, and more
- However, hand-crafted methods have significantly improved other domains such as geometry processing, rendering and animation, video processing, and physical simulations

# Basic Machine Learning Recipe

- 1. Obtain training data
- 2. Choose decision and loss functions
- 3. Define goal
- 4. Optimize!





# 1. Training Data

 $\{x_i, y_i\}$  for  $i \in [1, N]$ 

Fundamental categories:

- 1. Synthetic data
- 2. Real data (annotated)
- 3. Real data (unannotated) <- tricky!





#### **Properties:**

- 1. Data should span/populate the distribution of expected input values
- 2. Data should be plenty kinda same as above
- 3. Data should have low errors/noise (ideally)

# 2. Decision and Loss Functions

The function you wish to "decide" that given the inputs, and the parameters  $\theta$ , yields an output  $\hat{y}$  that is equal or close to desired values; thus, you seek

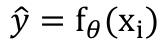
#### Properties:

- 1. Decision should be "doable" so that convergence is possible
- 2. Loss function should exploit as much as possible of domain knowledge



$$(\hat{y}, y_i) \to 0$$







# 3. Define (Training) Goal

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^N l(f_{\theta}(x_i), y_i)$$



Define a function to find parameters  $\theta^*$  that minimize the loss function for the entire training data set; i.e., find network weights and biases that make the network "learn" the desired (high-dimensional) function

# 4. Optimize!

• Perform small steps (opposite the gradient)...

$$\theta^{t+1} = \theta^t - \alpha_t \nabla l(\mathbf{f}_{\theta}(x_i), y_i)$$

Move a small step against the gradient to eventually reach a set of network parameters that minimize the loss function

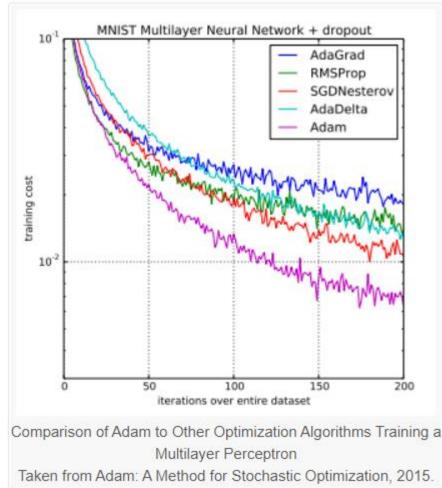




# 4. Optimize!

- Methods:
  - Stochastic Gradient Descent (SGD),
  - Adam, or
  - Others
- Adam: an adaptive moment estimation based optimization – the learning rate changes during the optimization [Kingma and Ba, 2015]

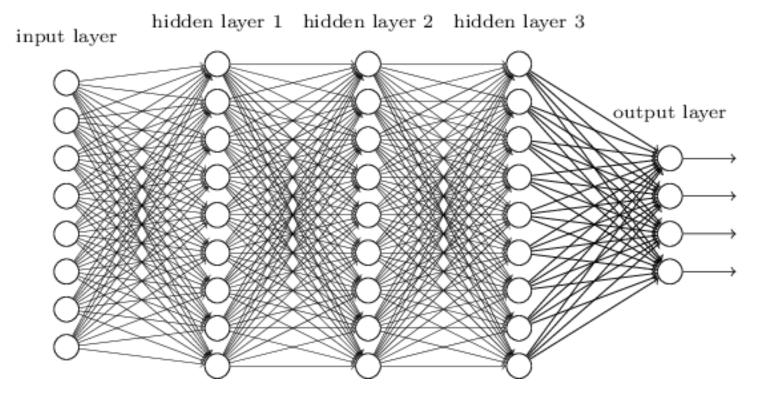


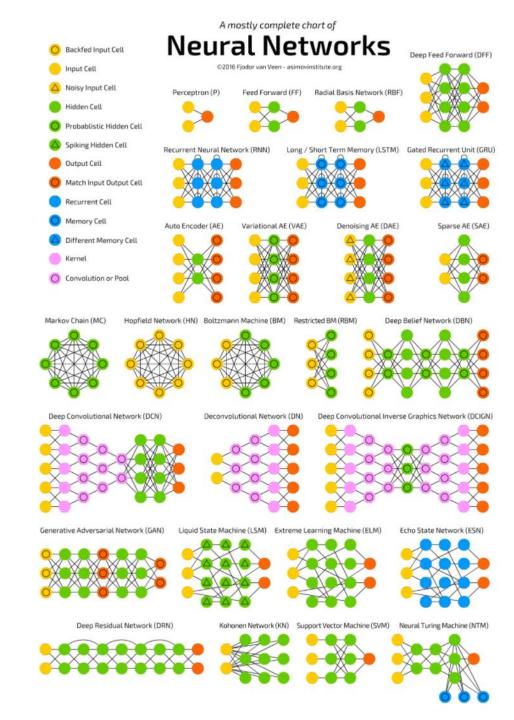


## Multilayer Perceptron: Fully Connected



- Fully Connected (FC) Network has lots of weights and biases to learn
  - 1 MP image has  $Lx10^{12}$  parameters for L layers (or several billion parameters)







https://towardsdatascience.com/themostly-complete-chart-of-neuralnetworks-explained-3fb6f2367464

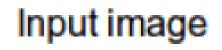


Can we reduce the number of parameters to learn with our training data?

- Yes! Convolutional Neural Networks (CNN)
- Uses:
  - Spatial locality
  - Kernel reuse
  - Weight sharing
- Example result:
  - Instead of "billions of parameters", using 100 kernels of 10x10 pixels with weight sharing needs only **10,000 parameters**

## (Image) Convolution





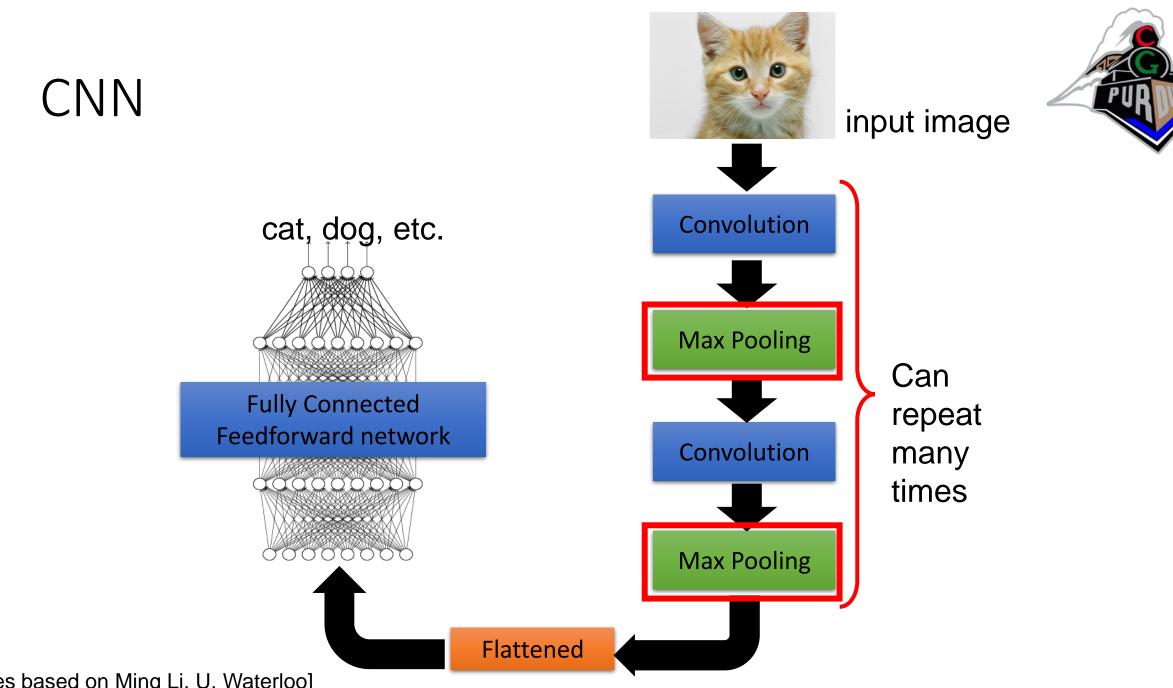


Convolution Kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Feature map





## **CNN:** Convolution Layer

## These are the network parameters to be learned.

Filter 1

Filter 2

-1

1

-1

1

1

1

1

-1

-1

-1

-1

-1

-1

-1

1

-1

-1

-1

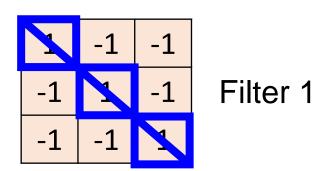
| 1 | 0 | 0 | 0 | 0 | 1 |
|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 |

6 x 6 image

Each filter detects a small pattern (3 x 3).

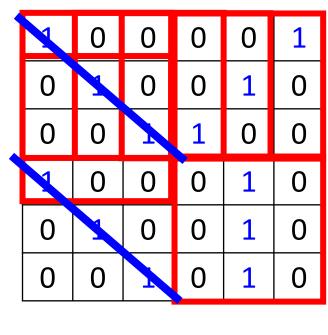


## **CNN:** Convolution Layer

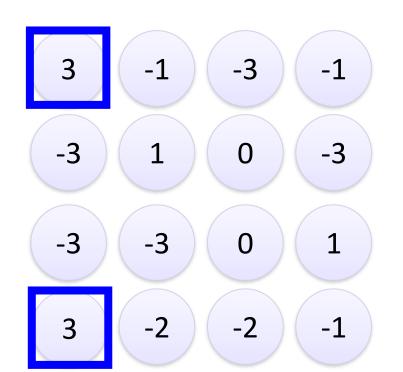




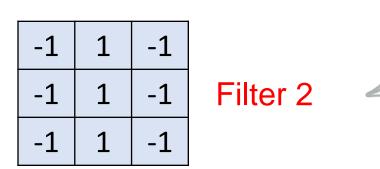
stride=1



6 x 6 image

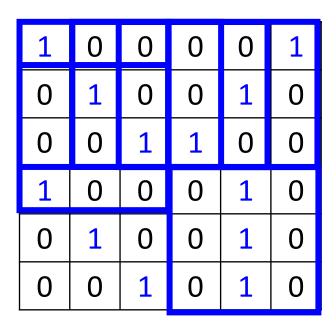


## **CNN:** Convolution Layer



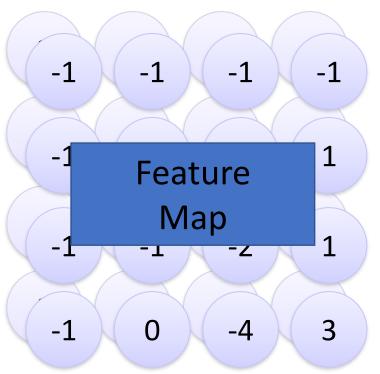


stride=1



6 x 6 image

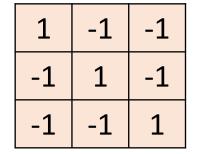
#### Repeat this for some number of filters



Two 4 x 4 images Forming 2 x 4 x 4 matrix

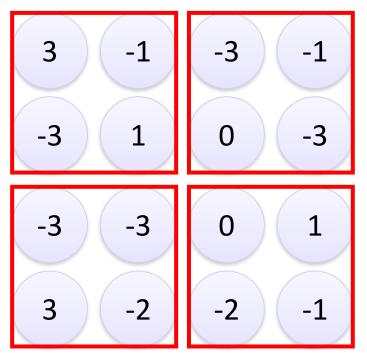


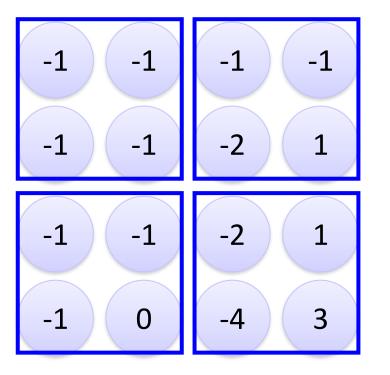
#### **CNN: Max Pooling**







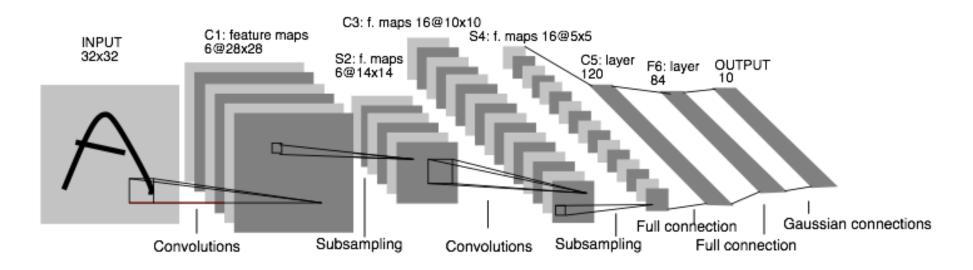






#### LeNet (1998)

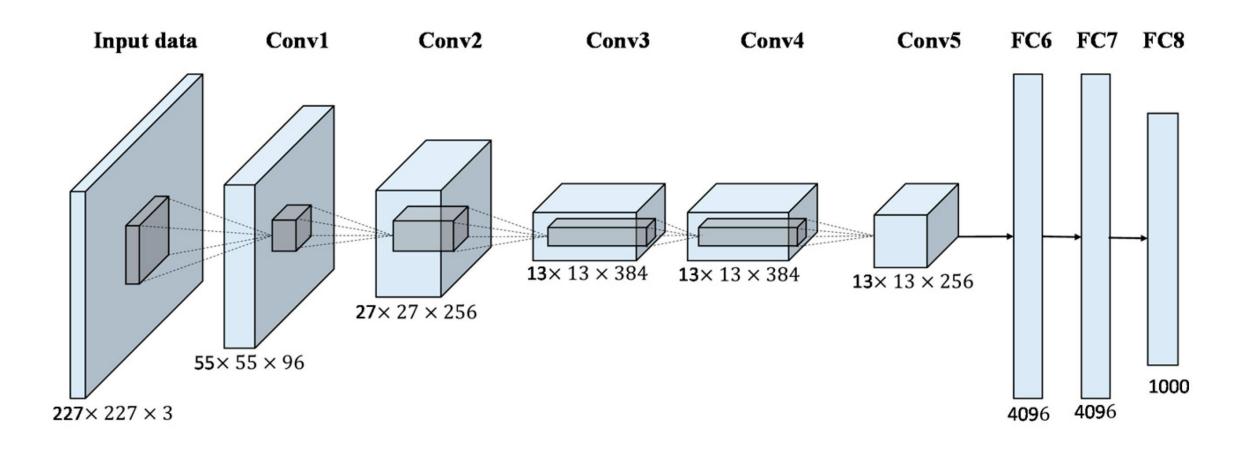
• 32x32 image using CPU



LeNet: a layered model composed of convolution and subsampling operations followed by a holistic representation and ultimately a classifier for handwritten digits. [LeNet]

#### AlexNet (2012) -- diagrammatic







### AlexNet: First Convolution Layer

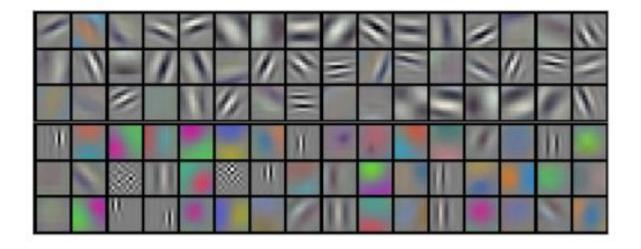


Figure 3: 96 convolutional kernels of size  $11 \times 11 \times 3$  learned by the first convolutional layer on the  $224 \times 224 \times 3$  input images. The top 48 kernels were learned on GPU 1 while the bottom 48 kernels were learned on GPU 2. See Section 6.1 for details.

#### Comparison

#### LeNet

- 32\*32\*1
- 7 layers
- 2 conv and 4 classification
- 60 thousand parameters
- Only two complete convolutional layers
  - Conv, nonlinearities, and pooling as one complete layer

#### AlexNet

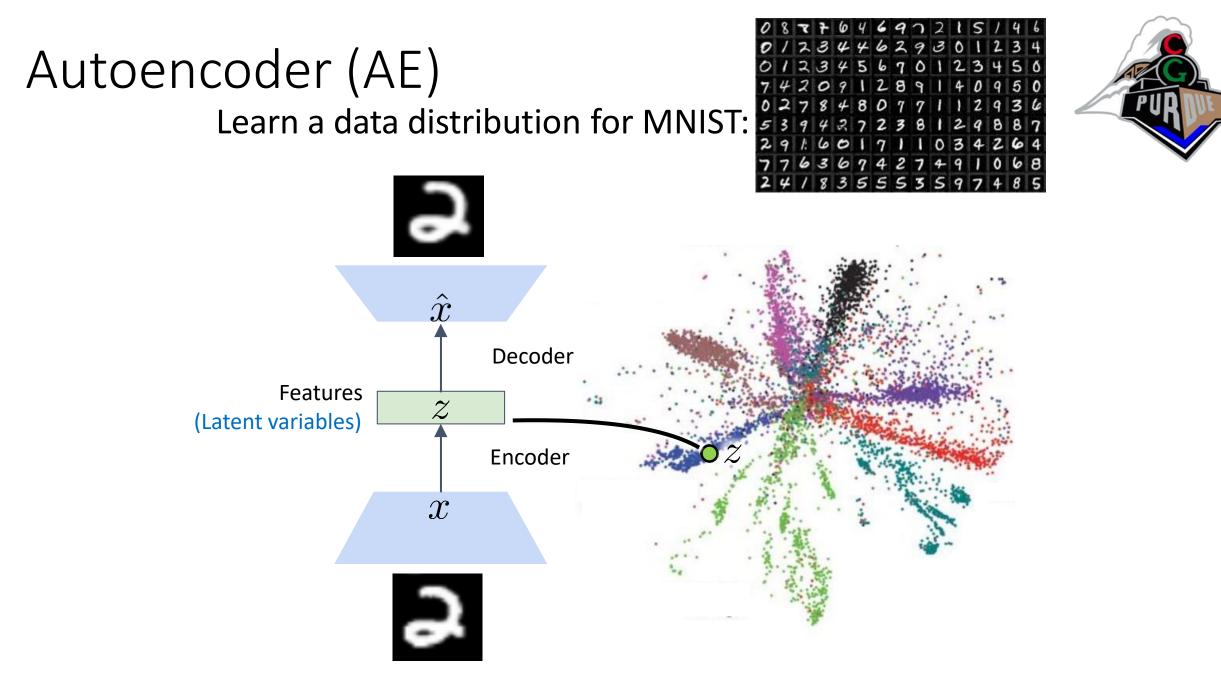
- 224\*224\*3
- 8 layers
- 5 conv and 3 fully classification
- 5 convolutional layers, and 3,4,5 stacked on top of each other
- Three complete conv layers
- 60 million parameters
- **Since** insufficient data, did data augmentation:
  - Patches (224 from 256 input), translations, reflections
  - PCA, simulate changes in intensity and colors



#### CNN Demo

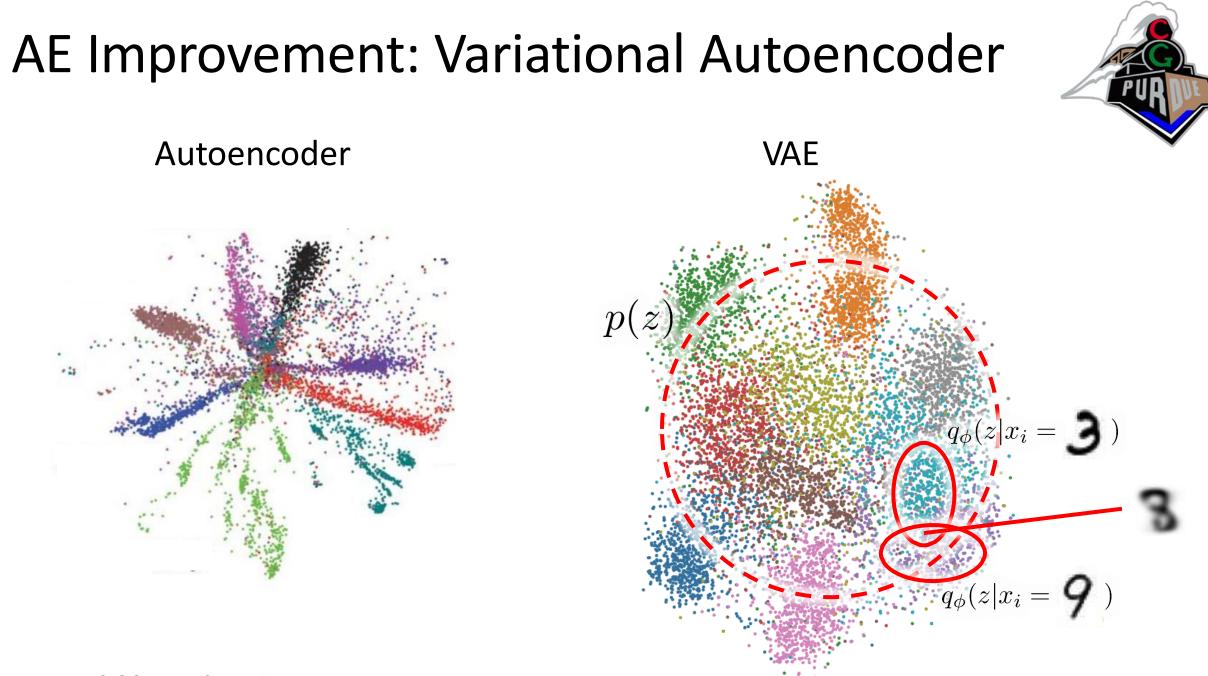


<u>https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html</u>



[CreativeAI – SIGGRAPH Course]

Image Credit: Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov

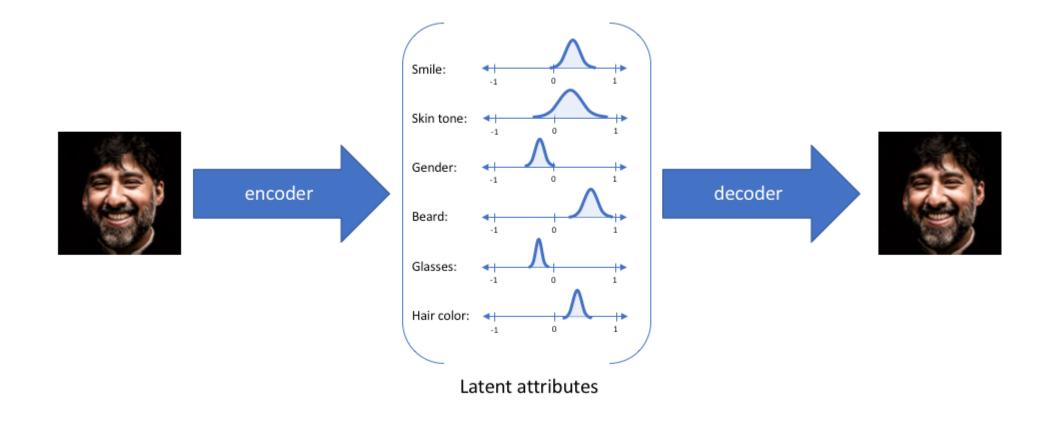


[CreativeAI – SIGGRAPH Course]

Image Credit: Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov



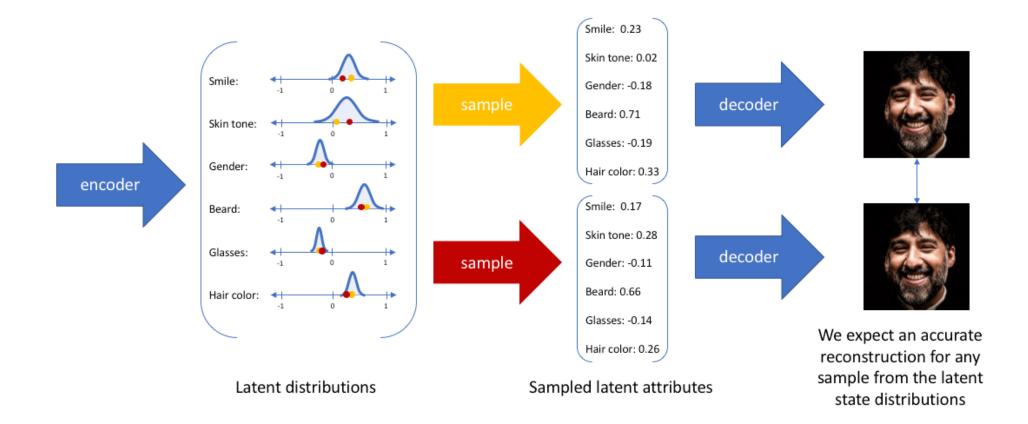
#### Variational Autoencoder Latent Space



https://www.jeremyjorgan.me/Variational-adioencoders/

#### Now, can ask for samples!





https://www.geremySlGan.me/Varlational-adioencoders/

# Generative Adversarial Networks (GANs)



#### $z \rightarrow Player 1: generator \checkmark$

Scores if discriminator can't distinguish output from real image





from dataset

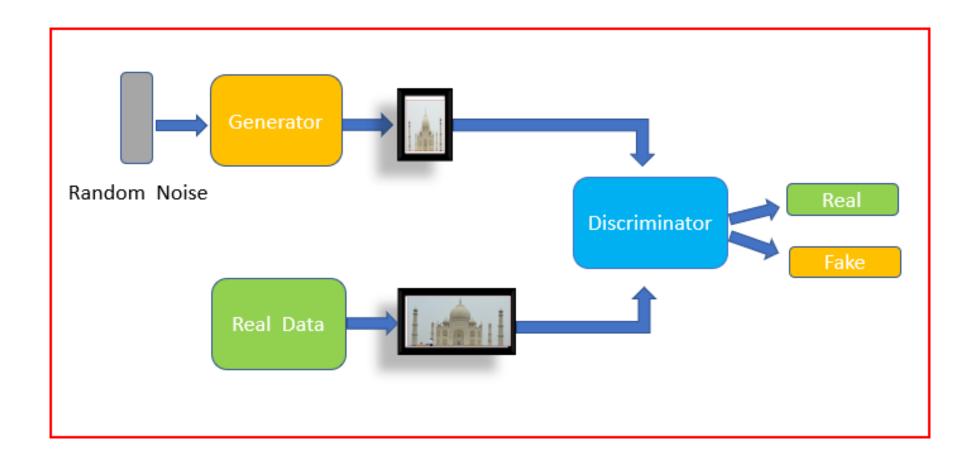
#### Player 2: discriminator — real/fake Scores if it can distinguish between real and fake

[CreativeAI – SIGGRAPH Course]

Image credit: A Style-Based Generator Architecture for Generative Adversarial Networks, Karras et al.



## Generative Adversarial Networks (GANs)

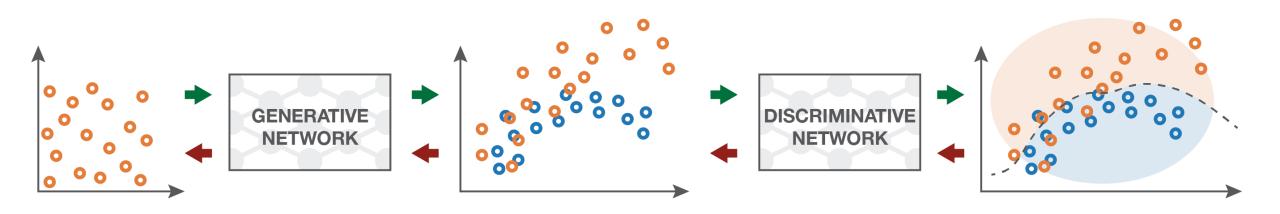


#### GAN Information Flow



Forward propagation (generation and classification)

Backward propagation (adversarial training)



Input random variables.

The generative network is trained to **maximise** the final classification error. The generated distribution and the true distribution are not compared directly. The discriminative network is trained to **minimise** the final classification error. The classification error is the basis metric for the training of both networks.

[CreativeAI – SIGGRAPH Course]

https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29





20142015201620Example of the Progression in the Capabilities of GANs From<br/>2014 to 2017. Taken from The Malicious Use of Artificial<br/>Intelligence: Forecasting, Prevention, and Mitigation, 2018.20

http://atitmelearshgfaReP.Unfallesele-generative-adversarial-networks-gans/

## StyleGAN

#### content

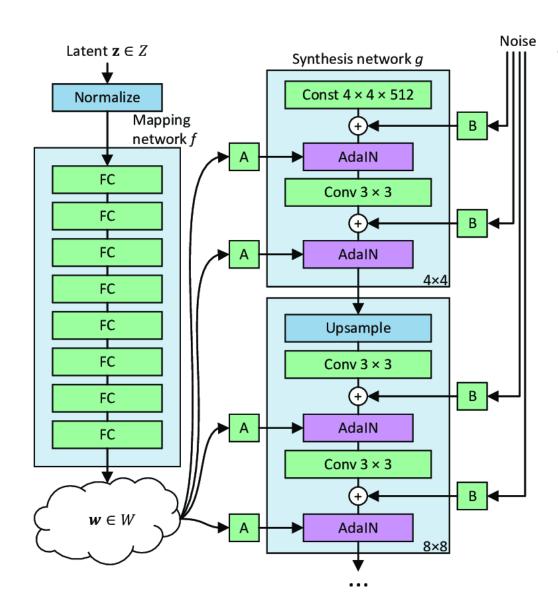
Additional Tricks:

- Coarse-to-fine training
- Transformation of p(z) to a more complex distr.



style

#### StyleGAN





#### StyleGAN Demo



<u>https://thispersondoesnotexist.com/</u>

#### Conditional GAN: Pix2Pix



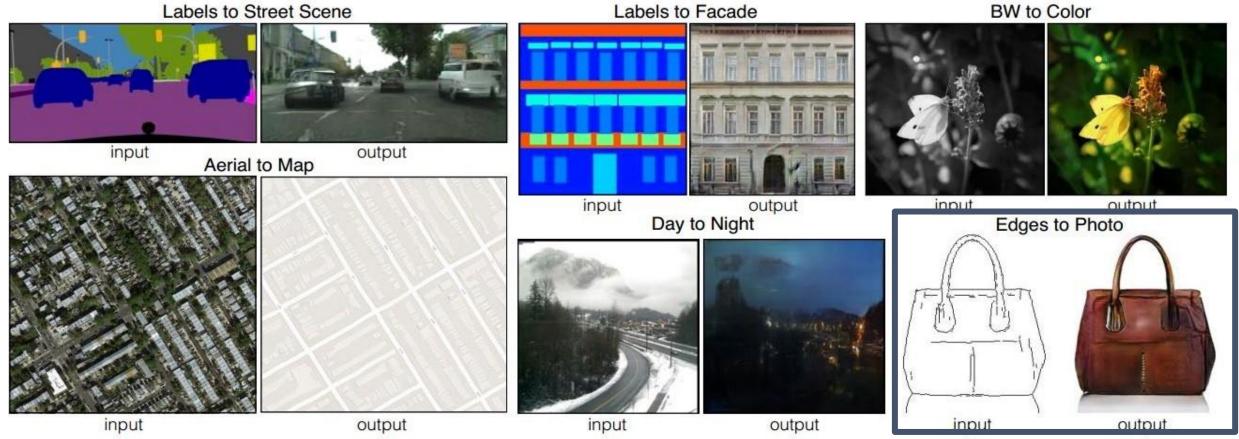


Image-to-image Translation with Conditional Adversarial Nets Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. CVPR 2017

[CreativeAI – SIGGRAPH Course]

slide credit: Phillip Isola & Jun-Yan Zhu

#### Edges $\rightarrow$ Images

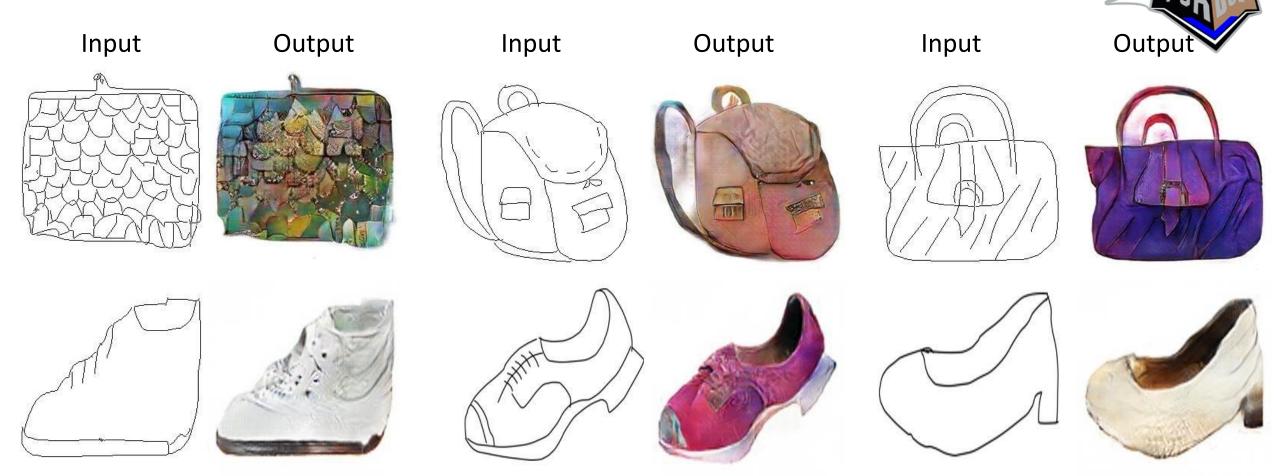


Edges from [Xie & Tu, 2015]

[CreativeAI – SIGGRAPH Course]

slide credit: Phillip Isola & Jun-Yan Zhu

#### Sketches $\rightarrow$ Images



Trained on Edges  $\rightarrow$  Images

Data from [Eitz, Hays, Alexa, 2012]

slide credit: Phillip Isola & Jun-Yan Zhu

[CreativeAI – SIGGRAPH Course]

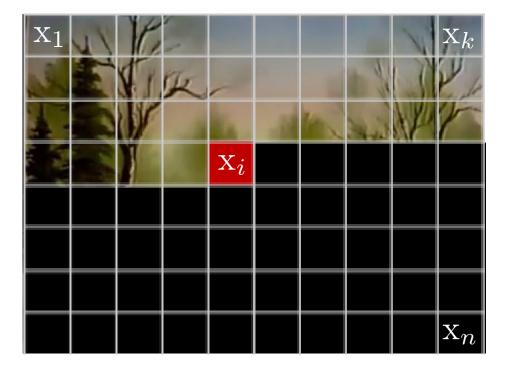
#### Pix2Pix Demo



<u>https://affinelayer.com/pixsrv/</u>

#### Autoregressive Models

- Create output step-by-step
- Each step depends on the output of all previous steps



$$x = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]$$
$$p_{\theta}(x) = p_{\theta}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$$

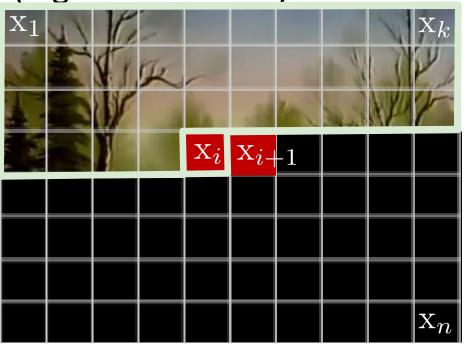
Chain rule of probability:  

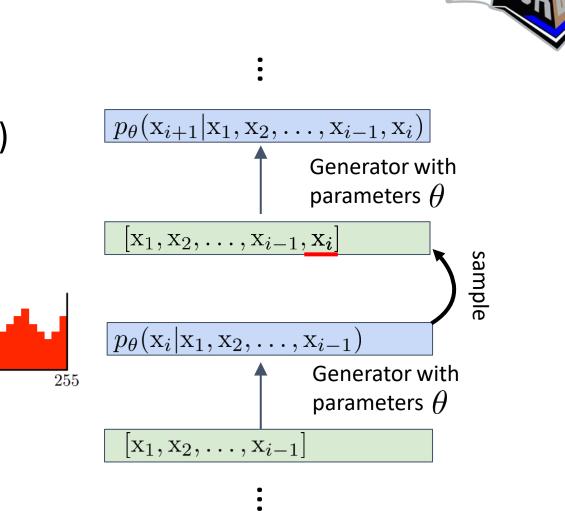
$$p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(\mathbf{x}_i | \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{i-1})$$

#### Autoregressive Models

 In each step, the model outputs a low-dimensional prob. distribution (e.g. over intensity values for one pixel)

0





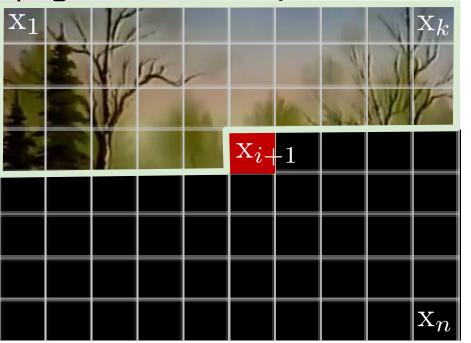
Sample

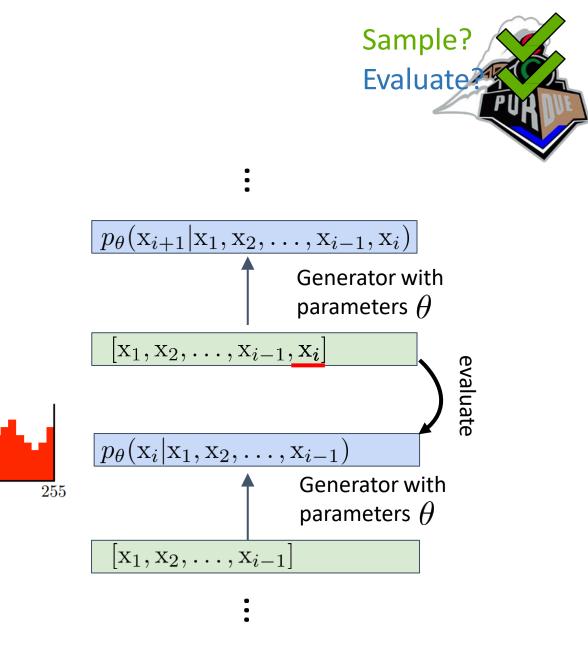
**Evaluate** 

#### Autoregressive Models

 In each step, the model outputs a low-dimensional prob. distribution (e.g. over intensity values for one pixel)

0

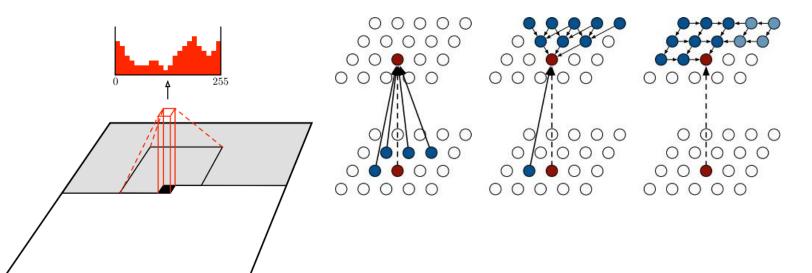




## Example: PixelRNN and PixelCNN



- Recursive network that has an **input** and a **state** (LSTM)
- Only recent steps are used as **input**, the **state** summarizes older steps





Sandbar



Lhasa Apso (dog)



Brown bear

#### Neural Reflectance Field (NERF)



• A <u>neural radiance field</u> (NeRF) is a fully-connected neural network that can generate novel views of complex 3D scenes, based on a partial set of 2D images



• (deep learning version of "Lightfields" – see other slides)

#### NERF





Instant-NERF: <u>https://blogs.nvidia.com/blog/2022/03/25/instant-nerf-research-3d-ai/</u>

Other NERFs: <a href="https://datagen.tech/guides/synthetic-data/neural-radiance-field-nerf/">https://datagen.tech/guides/synthetic-data/neural-radiance-field-nerf/</a>

#### **Diffusion Models**

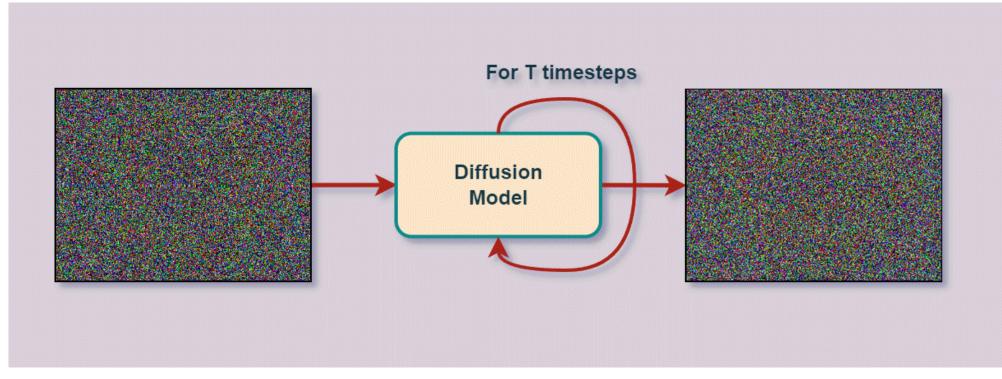
• From noise to data...



- Four popular diffusion models:
  - OpenAl's Dall-E 2
  - Google's Imagen
  - StabilityAl's Stable Diffusion
  - Midjourney

#### **Diffusion Models**





[https://learnopencv.com/image-generation-using-diffusion-models/]