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Deep Visual Computing

• Since the beginning, it turns out visual computing and machine 
learning have been deeply connected

• Do you know why?

• Lets see… (get it: lets “see”)



A long time ago in a computer far, far

inferior to your phone, it all began…

    -Daniel Aliaga, August 25, 2020



Logic Theorist (1956)

• A program designed to mimic the problem solving skills of a human

• From 1957-1974, AI flourished and failed and flourished…

• In 1968, A. Clarke and S. Kubrik said “by the year 2001 we will have 
machines with intelligence that matches or exceeded humans’s”

• In 1970, Marvin Minsky (MIT) said that in 3-8 years “we will have a 
machine with the general intelligence of an average human being”



AI Timeline



1980s

• Expert systems became popular: dedicated systems 

• “Deep learning techniques” was a coined phrase but with diverse 
meanings…

• I was around then, and even a paid undergraduate researcher in a 
major AI lab

- our job was to create a robot that could be programmed remotely and could 
execute algorithms for navigating and deciding how to avoid obstacles (e.g., 
walls and boxes)



Deep Learning Timeline



(Single Layer) Perceptron

• The Perceptron: A Probabilistic Model for Information Storage and 
Organization in the Brain, F. Rosenblatt, Psychological Review, 65(6), 
1958.

• Model based on the human visual system



Biology 101

• In human brain:
• Neuron switching time 

 ~ 0.001 second

• Number of neurons 

 ~ 1010

• Connections per neuron 

 ~ 104-5

• Scene recognition time 

 ~ 0.1 second

• Huge amount of parallel computation
→ 100 inference steps is not enough

© Eric Xing @ CMU, 2006-2011



From Biology to Computers…

• Biology                                                                    Perceptron

• Activation function

© Eric Xing @ CMU, 2006-2011 10
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Perceptron



Perceptron

𝑥0 𝑝

𝑦 = 𝑚𝑥 + 𝑏

𝑦0

Example: 𝑏 = 0, 𝑚 = 1 →

𝑥

𝑦

𝑦 = 𝑥



Perceptron

𝑥0 𝑝

𝑦 = 𝑚𝑥 + 𝑏

𝑦0

Activation Function



Activation Functions

𝑥

𝑦

Linear

NOTE: ReLU = Rectified Linear Unit, ELU = Exponential Linear Unit



Multilayer Perceptron

𝑥 𝑝0

ℎ = 𝑚0𝑥 + 𝑏0

𝑦

Example: b0 = b1 = 0, 𝑚0 = 𝑚1 = 0.5 →

𝑥

𝑦

𝑝1

𝑦 = 𝑚1ℎ + 𝑏1

𝑦 = 𝑚1(𝑚0𝑥 + 𝑏0) + 𝑏1

𝑦 = 0.25𝑥



Multilayer Perceptron

𝑥 𝑝0

ℎ = 𝑚0𝑥 + 𝑏0

𝑦

Example: b0 = b1 = 0, 𝑚0 = 2, 𝑚1 = 1

𝑝1

𝑦 =
1

1 + 𝑒−𝑚1(ℎ+𝑏1)

𝑦 =
1

1 + 𝑒−2𝑥

𝑦

𝑥

Intuitively: y will 
be “high” for 
smaller values of x

Example: b0 = b1 = 0, 𝑚0 = 0.5, 𝑚1 = 1

𝑦 =
1

1 + 𝑒−0.5𝑥

𝑦

𝑥

Intuitively: y will 
be “high” for 
larger values of x



Multilayer Perceptron

x

y

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

Layer 1
Node Bias x-Weight y-Weight

0 -0.375 -3 1

1 -0.125 0 1

2 -0.375 3 1

3 0.125 -0.75 1

4 0.125 0.75 1

Layer 2
From Node Bias Weight

0 -0.2 1

1 -0.2 1

2 -0.2 1

3 -0.2 1

4 -0.2 1

(Sigmoid activation functions)

Rounded to 0 
or 1



Star Classifier: https://www.cs.utexas.edu/~teammco/misc/mlp

https://www.cs.utexas.edu/~teammco/misc/mlp/


Perceptron



Perceptrons

• Book by M. Minsky and S. Papert (1969)

• Was actually “An Introduction to Computational Geometry” – thus 
visual as well

• Commented on the limited ability of perceptrons and on the difficulty 
in training multi-layer perceptrons

• (Back propagation appeared in 1986 and helped a lot!)



Reprise: Computer Vision

• In 1959, Russell Kirsch and colleagues developed an image scanner: 
transform an image into a grid of numbers so that a machine can 
understand it!

• One of the first scanned images:
           (176x176 pixels)



2010

• ImageNet Large Scale Visual Recognition Competition (ILSVRC) runs 
annually

• 2010/2011: error rates were around 26%

• 2012: the beginning of a new beginning – AlexNet – reduced errors to 16%!



AlexNet

• University of Toronto created a CNN model (AlexNet) that changed 
everything (Krizhevsky et al. 2012)



ILSVRC (2011-2017)



ILSVRC (2010-2017)



Reprise: Computer Graphics

• First graphics visual image: 
• Ben Laposky used an oscilloscope in 1950s

(note: one of my undergrad senior 

projects was an oscilloscope based

graphics engine)



Whirlwind Computer @ MIT

• Video display of real-time data:



1960s

• Ivan Sutherland used vector displays (=oscilloscope), light pens, and 
interaction 



1965: The Ultimate Display…

• Fred Brooks using one of Ivan’s displays….the birth of VR/AR

• NOTE: Fred Brooks was on my PhD committee, I worked in his research 
group and my MS and PhD revolved around VR/AR and graphics.



Deep Learning in Computer Graphics

• Like in computer vision, since 2010’ish deep learning has 
revolutionized computational imaging and computational 
photography, rendering, and more

• However, hand-crafted methods have significantly improved other 
domains such as geometry processing, rendering and animation, 
video processing, and physical simulations



Basic Machine Learning Recipe

1. Obtain training data

2. Choose decision and loss functions

3. Define goal

4. Optimize!



1. Training Data

𝑥𝑖 , 𝑦𝑖  for i ∈ [1, 𝑁]

Fundamental categories:

1. Synthetic data

2. Real data (annotated)

3. Real data (unannotated)  <- tricky!

Properties:

1. Data should span/populate the distribution of expected input values

2. Data should be plenty – kinda same as above

3. Data should have low errors/noise (ideally)



2. Decision and Loss Functions

ො𝑦 = f𝜃(xi)

The function you wish to “decide” that given the inputs, and the 
parameters 𝜃, yields an output ො𝑦 that is equal or close to desired values; 
thus, you seek

𝑙 ො𝑦, 𝑦𝑖 → 0

Properties:
1. Decision should be “doable” so that convergence is possible
2. Loss function should exploit as much as possible of domain 

knowledge



3. Define (Training) Goal

𝜃∗ = argmin
𝜃



𝑖=1

𝑁

𝑙(𝑓𝜃 𝑥𝑖 , 𝑦𝑖)

Define a function to find parameters 𝜃∗ that minimize the loss function 
for the entire training data set; i.e., find network weights and biases 
that make the network “learn” the desired (high-dimensional) function



4. Optimize!

• Perform small steps (opposite the gradient)… 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝑡𝛻𝑙 f𝜃 𝑥𝑖 , 𝑦𝑖

Move a small step against the gradient to eventually 

reach a set of network parameters that minimize the 

loss function



4. Optimize!

• Methods:
• Stochastic Gradient Descent (SGD),

• Adam, or

• Others

• Adam: an adaptive moment 
estimation based optimization – the 
learning rate changes during the 
optimization [Kingma and Ba, 2015]



Multilayer Perceptron: Fully Connected

• Fully Connected (FC) Network has lots of weights and biases to learn
• 1 MP image has 𝐿𝑥1012 parameters for 𝐿 layers (or several billion 

parameters)



https://towardsdatascience.com/the-
mostly-complete-chart-of-neural-
networks-explained-3fb6f2367464

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464


Can we reduce the number of parameters to 
learn with our training data?
• Yes! Convolutional Neural Networks (CNN)

• Uses:
• Spatial locality

• Kernel reuse

• Weight sharing

• Example result:
• Instead of “billions of parameters”, using 100 kernels of 10x10 pixels with weight sharing 

needs only 10,000 parameters



(Image) Convolution



Fully Connected 
Feedforward network

input image

Convolution

Max Pooling

Convolution

Max Pooling

Flattened

Can 

repeat 

many 

times

cat, dog, etc.

CNN

[Slides based on Ming Li, U. Waterloo]



CNN: Convolution Layer

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2
……

These are the network 

parameters to be learned.

Each filter detects a 

small pattern (3 x 3). [Slides based on Ming Li, U. Waterloo]



1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1

CNN: Convolution Layer

[Slides based on Ming Li, U. Waterloo]



1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Repeat this for some number of filters
stride=1

Two 4 x 4 images

Forming 2 x 4 x 4 matrix

Feature
Map

CNN: Convolution Layer

[Slides based on Ming Li, U. Waterloo]



3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

CNN: Max Pooling

[Slides based on Ming Li, U. Waterloo]



LeNet: a layered model composed of convolution and subsampling operations followed by a holistic representation and 
ultimately a classifier for handwritten digits. [ LeNet ]

LeNet (1998)

• 32x32 image using CPU



AlexNet (2012) -- diagrammatic



AlexNet: First Convolution Layer



Comparison

LeNet

• 32*32*1

• 7 layers 

• 2 conv and 4 classification

• 60 thousand parameters

• Only two complete convolutional 
layers
• Conv, nonlinearities, and pooling as one 

complete layer

AlexNet

• 224*224*3

• 8 layers

• 5 conv and 3 fully classification

• 5 convolutional layers, and 3,4,5 stacked 
on top of each other

• Three complete conv layers

• 60 million parameters

• Since insufficient data, did data 
augmentation: 
• Patches (224 from 256 input), translations, 

reflections
• PCA, simulate changes in intensity and colors



CNN Demo

• https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html



Autoencoder (AE)
Learn a data distribution for MNIST:

Decoder

Features  
(Latent variables)

Encoder

Image Credit: Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov
[CreativeAI – SIGGRAPH Course]



AE Improvement: Variational Autoencoder

Autoencoder VAE

Image Credit: Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov[CreativeAI – SIGGRAPH Course]



Variational Autoencoder Latent Space

https://www.jeremyjordan.me/variational-autoencoders/[CreativeAI – SIGGRAPH Course]



Now, can ask for samples!

https://www.jeremyjordan.me/variational-autoencoders/[CreativeAI – SIGGRAPH Course]



Generative Adversarial Networks (GANs)
[Goodfellow et al. 2014]

Player 2: discriminator
Scores if it can distinguish  
between real and fake

real/fake

from dataset

Player 1: generator  
Scores if discriminator  
can’t distinguish output  
from real image

Image credit: A Style-Based Generator Architecture for Generative Adversarial Networks, Karras et al.[CreativeAI – SIGGRAPH Course]



Generative Adversarial Networks (GANs)



https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

[CreativeAI – SIGGRAPH Course]

GAN Information Flow



Example of the Progression in the Capabilities of GANs From 
2014 to 2017. Taken from The Malicious Use of Artificial 
Intelligence: Forecasting, Prevention, and Mitigation, 2018.

https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/[CreativeAI – SIGGRAPH Course]

https://arxiv.org/abs/1802.07228
https://arxiv.org/abs/1802.07228


Additional Tricks:

• Coarse-to-fine training

• Transformation of
to a more complex distr.

• ...

StyleGAN
content

st
yl

e

Image credit: A Style-Based Generator Architecture for Generative Adversarial Networks, Karras et al.[CreativeAI – SIGGRAPH Course]



StyleGAN



StyleGAN Demo

• https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/


Conditional GAN: Pix2Pix

Image-to-image Translation with Conditional Adversarial Nets  
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. CVPR 2017

slide credit: Phillip Isola & Jun-Yan Zhu[CreativeAI – SIGGRAPH Course]



Edges → Images

Input Output Input Output Input Output

Edges from [Xie & Tu, 2015]

slide credit: Phillip Isola & Jun-Yan Zhu[CreativeAI – SIGGRAPH Course]



Sketches → Images

Input Output Input Output Input Output

Trained on Edges → Images
Data from [Eitz, Hays, Alexa, 2012]

slide credit: Phillip Isola & Jun-Yan Zhu[CreativeAI – SIGGRAPH Course]



Pix2Pix Demo

• https://affinelayer.com/pixsrv/

https://affinelayer.com/pixsrv/


• Create output step-by-step

• Each step depends on the output of all previous steps

Autoregressive Models

Chain rule of probability:

Video Credit: YouTube user karwan kalary, Bob Ross Time Lapse[CreativeAI – SIGGRAPH Course]



Autoregressive Models

Generator with  
parameters

sam
p

le

Generator with  
parameters

…
…

• In each step, the model outputs
a low-dimensional prob. distribution  
(e.g. over intensity values for one pixel)

Sample?  
Evaluate?

Video Credit: YouTube user karwan kalary, Bob Ross Time Lapse[CreativeAI – SIGGRAPH Course]



Autoregressive Models

Generator with  
parameters

evalu
ate

Generator with  
parameters

…
…

• In each step, the model outputs
a low-dimensional prob. distribution  
(e.g. over intensity values for one pixel)

Sample?  
Evaluate?

Image Credit: YouTube user karwan kalary, Bob Ross Time Lapse[CreativeAI – SIGGRAPH Course]



Example: PixelRNN and PixelCNN

• Recursive network that has an input and a state (LSTM)

• Only recent steps are used as input, the state summarizes older steps

[CreativeAI – SIGGRAPH Course]



Neural Reflectance Field (NERF)

• A neural radiance field (NeRF) is a fully-connected neural network 
that can generate novel views of complex 3D scenes, based on a 
partial set of 2D images

• (deep learning version of “Lightfields” – see other slides)

https://arxiv.org/abs/2003.08934


NERF

Other NERFs: https://datagen.tech/guides/synthetic-data/neural-radiance-field-nerf/

Instant-NERF: https://blogs.nvidia.com/blog/2022/03/25/instant-nerf-research-3d-ai/

https://datagen.tech/guides/synthetic-data/neural-radiance-field-nerf/
https://blogs.nvidia.com/blog/2022/03/25/instant-nerf-research-3d-ai/


Diffusion Models

• From noise to data…

• Four popular diffusion models:
• OpenAI’s Dall-E 2
• Google’s Imagen
• StabilityAI’s Stable Diffusion
• Midjourney



Diffusion Models

    [https://learnopencv.com/image-generation-using-diffusion-models/]
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