Color and Perception

CS334 Fall 2023

Daniel G. Aliaga
Department of Computer Science
Purdue University

Elements of Color Perception

Perception

Elements of Color

- Physics:
- Illumination
- Electromagnetic spectra; approx. 350-720nm
- Reflection
- Material properties (i.e., reflectance, transparency)
- Surface geometry and micro geometry (i.e., polished versus matte versus brushed)
- Perception
- Physiology and neurophysiology
- Perceptual psychology

Physiology of the Eye

- The eye:
- The retina
- 100 M Rods
- B\&W
- 5 M Cones
- Color

Physiology of the Retina

- The center of the retina is a densely packed region called the fovea.
- Cones much denser here than the periphery

1.35 mm from rentina center

8 mm from rentina center

Types of Cones

- Three types of cones:
- L or R, most sensitive to red light (610 nm)
- M or G, most sensitive to green light (560 nm)
- S or B, most sensitive to blue light (430 nm)

- Color blindness results from missing cone type(s)

Color Blindness

Normal

Protan (L-cone) "red insensitivity"

Deutan (M-cone) "green insensitivity"

Tritan (S-cone) " $\mathrm{B}=\mathrm{G}$ and $\mathrm{Y}=$ violet"

Mini Color Blindness Test

What do YOU see?

Both the normal and those with all sort of color vision deficiencies read it as 12.

The normal read this as
8.

Those with red-green deficiencies read this as
3.

Those with total color blindness cannot read any numeral.

The normal read this as
5.

Those with red-green deficiencies read this as
3.

Those with total color blindness cannot read any numeral.

The normal read this as
3.

Those with red-green deficiencies read this as
5.

Those with total color blindness cannot read any numeral.

The normal read this as
6.

The majority of those with color vision deficiencies can not read them or read them incorrectly.

The normal read this as 45.

The majority of those with color vision deficiencies can not read them or read them incorrectly.

The majority of the normal and those with total color blindness
cannot read any numeral.

The majority of those with red-green deficiencies read this as
5.

Perception: Other Gotchas

- Color perception is also difficult because:
- It varies from person to person (thus need "standard observers")
- It is affected by adaptation
- It is affected by surrounding color
- There is Mach-banding

Summary of Human Color Perception

- Subjectively, the human eye seems to perceive color by three conceptual dimensions:
- hue,
- brightness, and
- saturation.
- This suggests a 3D color space.
- Hardware reproduction of color cannot match human perception perfectly.

Perception: Metamers

- A given perceptual sensation of color derives from the stimulus of all three cone types
- Identical perceptions of color can be caused by very different spectra

Simultaneous Contrast

- Is "A" looks darker than "B"?

Simultaneous Contrast

- Is "A" looks darker than "B"?

Simultaneous Contrast

- Is "A" looks darker than "B"?
- Nope! Why?

- What about in color?
http://www.sandlotscience.com/Guided Tours/Tour1/Tour 5.htm

Cornsweet Illusion

Changing Contrast

Changing Contrast

Contrast Sensitivity Function

Contrast Sensitivity Function

Learned Expectation

Learned Expectation

Learned Expectation

THE PAOMNNEHAL PWEOR OF THE HMUAN MNID. Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoatnt tihng is taht the frist and Isat Itteer be in the rghit pclae. The rset can be a taotl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey Iteter by istlef, but the wrod as a wlohe.

Learned Expectation

- Starting the below left to right, top to bottom
red blue orange purple
orange blue green red
blue purple green red
orange blue red green
purple orange red blue
green red blue purple
orange blue red green
purple orange red blue
- Stroop Effect [1935]

Learned Expectation

'MASK
These two tables appear to have very different dimensions. In fact, the length of the green table is identical to the width of the red table; and the length of the red table is the same as the width of the green table. Move your mouse over the 'mask' to reveal their 'true' similarity.

Ambiguity = Visual Confusion

Ambiguity $=$ Visual Confusion

Stereo Depth Perception

Stereo Depth Perception

- 1. Place finger in between circle and eyes
- 2. Focus on finger
- 3. Focus on circle
[http://www.mediacollege.com/3d/depth-perception/test.html]

Stereo Depth Perception

- 1. Place finger in between circle and eyes
- 2. Focus on finger
- 3. Focus on circle
[http://www.mediacollege.com/3d/depth-perception/test.html]

Perception and Stereopsis

Sir Charles Wheatstone

- Circa 1840

Basic Stereopsis

Perception and Stereopsis

Examples

- Using Cornsweet Illusion to better stereopsis https://www.pdf.inf.usi.ch/papers/disparityCornswe et/disparityCornsweet.pdf
To improve gloss depiction http://resources.mpiinf.mpg.de/HighlightMicrodisparity/paper.pdf
- To account for luminance as well
http://people.csail.mit.edu/pdidyk/projects/Lumina nceDisparityModel/LuminanceDisparityModel.pdf

Opponent Color Theory

- Humans encode colors by differences
- E.g R-G, and B-Y Differences

Artistic Color Space

Color Spaces

- Three types of cones suggests color is a 3D quantity. How to define 3D color space?
- Idea: shine given wavelength (λ) on a screen, and mix three other wavelengths (R, G, B) on same screen. Have user adjust intensity of RGB until colors are identical:

How closely does this correspond to a color CRT?

Problem:
sometimes need to "subtract" R to match λ

CIE Color Space

- The CIE (Commission Internationale d'Eclairage) came up with three hypothetical lights X, Y, and Z with these spectra:

$$
\begin{aligned}
& \text { Approximately: } \\
& \qquad \begin{array}{c}
X \sim R \\
Y \sim G \\
Z \sim B
\end{array}
\end{aligned}
$$

- Idea: any wavelength λ can be matched perceptually by positive combinations of X, Y, Z

CIE Color Space

CIE Color Space

CIE Color Space

- The gamut of all colors perceivable is thus a three-dimensional shape in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$:

For simplicity, we often project to the 2D plane $X+Y+Z=1$, e.g.:

$$
\begin{aligned}
& X=X /(X+Y+Z) \\
& Y=Y /(X+Y+Z) \\
& Z=1-X-Y
\end{aligned}
$$

Device Color Gamuts

- X, Y, and Z are hypothetical light sources; no real device can produce the entire gamut of perceivable color
- Example: CRT monitor

Red Phosphor

Device Color Gamuts

- The RGB color cube sits within CIE color space something like:

Device Color Gamuts

- We can use the CIE chromaticity diagram to compare the gamuts of various devices:
- Note, for example, that a color printer cannot reproduce all shades available on a color monitor

LAB Space

- $A L^{*} a^{*} b^{*}$ color space is a color-opponent space with dimension L^{*} for lightness and a^{*} and b^{*} for the color-opponent dimensions, based on nonlinearly compressed CIE XYZ color space coordinates.

$$
\begin{aligned}
& L^{\star}=116 f\left(Y / Y_{n}\right)-16 \\
& a^{\star}=500\left[f\left(X / X_{n}\right)-f\left(Y / Y_{n}\right)\right] \quad f(t)=\left\{\begin{array}{ll}
1^{1 / 3} & \text { if } t>\left(\frac{6}{23}\right)^{3} \\
\frac{1}{3}\left(\frac{29}{6}\right)^{2} t+\frac{4}{29} & \text { otherwise }
\end{array}=200\left[f\left(Y / Y_{n}\right)-f\left(Z / Z_{n}\right)\right]\right.
\end{aligned}
$$

LAB Space

- L ${ }^{*}{ }^{*} b^{*}$ color is designed to approximate human vision. It aspires to perceptual uniformity, and its L* component closely matches human perception of "lightness", and a^{*} and b^{*} alters "color".
- In contrast, RGB, CMYK, and other spaces model the output of physical devices rather than human visual perception

LAB Space Perceptually Fun Facts: a* axis

- a* axis corresponds to "blue yellow" range which approximates black body radiation

LAB Space Perceptually Fun Facts:

 a* axis- a* axis corresponds to "blue yellow" range which approximates black body radiation
- We *seem* to be less sensitive to changes along that axis - maybe because "its everywhere"

Color Constancy

- Lets look at this:
- https://www.youtube.com/watch?v=XYnqH HHZDo

Color Constancy

- Lets look at this:
- https://www.youtube.com/watch?v=XYnqH HHZDo
- What is happening?

Color Constancy

- What color is the fruit on top of the pie?

Color Constancy

LAB Space Perceptually Fun Facts: Color Constancy

- Color constancy is an example of subjective constancy
- It states that the perceived color of objects remains relatively constant under varying illumination conditions.
- e.g., A green apple looks green to us at noon (white sunlight) or at sunset (red sunlight)

LAB Space Perceptually Fun Facts: Examples

- In both pictures, we can recognize the same colors, why?

LAB Space Perceptually Fun Facts: Examples

- In both pictures, we can recognize the same colors, why?

Color Constancy

- Can we write this down as an equation?

Color Constancy

- Given two colors, we compute

$$
C_{1} / C_{2}=R_{12}
$$

- Now change the colors but keep the ratio, so

$$
\mathrm{C}_{1}^{\prime} / \mathrm{C}_{2}^{\prime}=\mathrm{R}_{12}
$$

- The colors will seem relatively the same (or "constant")

Perceptually Significant Color Differences

- In LAB, one unit means a perceptually significant color/luminosity difference
- This is not the case in, for example, RGB
- Check out:
http://colormine.org/delta-e-calculator/

Example use in current research...

RGB Color Space

RGB Color Space

- Convenient colors (screen phosphors)
- Decent coverage of the human color
- Customarily quantized in the range 0... 255
- Full color = 3 bytes/pixel
- Not a particularly good basis for human interaction
- Non-intuitive
- Non-orthogonal (perceptually)

RGB Color Space

- The RBG colors can be arranged in a cube, in a space with the dimensions R, G, and B. The colors at the vertices of the RGB cube are then:

Color	R	G	B
black	0	0	0
white	255	255	255
red	255	0	0
green	0	255	0
blue	0	0	255
cyan	0	255	255
magenta	255	0	255
yellow	255	255	0

RGB Cube Properties

- The main diagonal from black to white contains the gray scale.
- If a specific color is given as ($\mathrm{R}, \mathrm{G}, \mathrm{B}$) and k is a number smaller than 1, then ($k R, k G, k B$) has approximately the same hue and is dimmer. So, we can model color intensity by
- (kR, kG, kB), k < 1
- Note that the brightness of (R, G, B) is not exceeded

RGB Color Spaces

- Sometimes only a simple matrix operation is needed:

$$
\left[\begin{array}{l}
R^{\prime} \\
G^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
X_{R} & X_{G} & X_{B} \\
Y_{R} & Y_{G} & Y_{B} \\
Z_{R} & Z_{G} & Z_{B}
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

- The transformation $\mathbf{C}_{\mathbf{2}}=\mathbf{M}^{-1} \mathbf{M}_{1} \mathbf{C}_{1}$ yields RGB on monitor 2 that is equivalent to a given RGB on monitor 1
- Analogous to change of coordinate system.
- Standard RGB space of a "RGB device" assuming a gamma correction of 2.2
- (gamma correction to be explained in a few slides)

$$
\begin{aligned}
& {\left[\begin{array}{l}
R_{\text {linear }} \\
G_{\text {linear }} \\
B_{\text {linear }}
\end{array}\right]=\left[\begin{array}{ccc}
3.2406 & -1.5372 & -0.4986 \\
-0.9689 & 1.8758 & 0.0415 \\
0.0557 & -0.2040 & 1.0570
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]} \\
& C_{\text {srgb }}= \begin{cases}12.92 C_{\text {linear }}, & C_{\text {linear }} \leq 0.0031308 \\
(1+a) C_{\text {linear }}^{1 / 2.4}-a, & C_{\text {linear }}>0.0031308\end{cases}
\end{aligned}
$$

where C corresponds to any of R, G or B ; and $\mathrm{a}=0.055$

sRGB

LAB and sRGB

- "ab" slices of LAB space that fall within the sRGB gamut of a typical display
$-s R G B=$ "standard RGB gamut"

HSV/HSL Color Space

HSV/HSL Color Space

- Intensity/Value
- total amount of energy
- Saturation
- degree to which color is one wavelength
- Hue
- dominant wavelength
- $\operatorname{Max}=\max (\mathrm{R}, \mathrm{G}, \mathrm{B})$
- $\operatorname{Min}=\min (R, G, B)$
- $S=(\max -\min) / \max$
- If $\mathrm{R}==\mathrm{Max} \rightarrow \mathrm{h}=(\mathrm{G}-\mathrm{B}) /($ max-min)
- If $G==M a x \rightarrow h=2+(B-R) /(m a x-m i n)$
- If $B==$ Max $\rightarrow h=4+(R-G) /(\max -\min)$
- If $\mathrm{h}<0 \rightarrow \mathrm{H}=\mathrm{h} / 6+1$
- If $h>0 \rightarrow H=h / 6$

HSV User Interaction

HSL

$$
\begin{aligned}
S & =\sqrt{\frac{(R-G)^{2}+(R-B)^{2}+(G-B)^{2}}{2}} \\
I & =\frac{R+G+B}{3} \\
H & =\frac{a-\arctan \frac{(R-1) b}{G-B}}{2 \pi} \\
a & =\frac{\pi}{2} \text { if G>B, } \frac{3 \pi}{2} \mathrm{if} \mathrm{G}<\mathrm{B} \\
H & =1 \text { if G }=\mathrm{B} \\
a & =\sqrt{3}
\end{aligned}
$$

YIQ Color Space

- YIQ is the color model used for color TV in the US
- Y is luminance; I \& Q are color
- Note: Y is the same as CIE's Y
- Result: backwards compatibility with B/W TV!

Converting Between RGB and YIO

- Converting between color models can also be expressed as such a matrix transform, e.g.:

$$
\left[\begin{array}{l}
Y \\
I \\
Q
\end{array}\right]=\left[\begin{array}{ccc}
0.30 & 0.59 & 0.11 \\
0.60 & -0.28 & -0.32 \\
0.21 & -0.52 & 0.31
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

Gamma Correction

- We generally assume color brightness is linear
- But most display devices are inherently nonlinear
- brightness(voltage) $\neq 2 \times$ brightness(voltage/2): $I=V_{s}^{\gamma}$
- Common solution: gamma correction
- Post-transformation on RGB values to map them to linear range on display device: $V_{c}=V_{S}{ }^{\frac{1}{\gamma}}$
- Can have separate γ for R, G, B
$-\gamma$ is usually in range 1.8 to 2.2

Gamma Correction

Gamma Correction Test

The $\mathrm{fg}+\mathrm{bg}$ should blend at near 2.2

Gamma Correction

Display
(gamma expansion)

Gamma Correction

Display
(gamma expansion)

Examples

- Demo apps
- Website:
- http://www.webexhibits.org/colorart/contrast.html

Supercool!

- [Video]

