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Typical OpenGL Matrices

Projection Matrix

— Defines the projection process: perspective,
orthographic, etc.

ModelView Matrix (or View Matrix)

— Defines where is the camera

Model Matrices
— Applied to geometry/model to define scene objects

Texture Matrix
— Is applied to the “texture” (more on this later)



Transformations

* Most popular transformations in graphics
— Translation
— Rotation
— Scale
— Projection
* |n order to use a single matrix for all, we use

homogeneous coordinates (we talked about
this already)
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3D Transformations

Rotate around Z axis:

Rotate a_ro_und Y axis:
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V' _|smm® cos® 0
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Rotate around X axis:
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Perspective projection




Projection Transformations @
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void glFrustum(GLdouble left, GLdouble right, GLdouble
bottom, GLdouble top, GLdouble near, GLdouble far);



Projection Transformations @

void gluPerspective (GLdouble fovy, GLdouble aspect, GLdouble
near, GLdouble far);
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Projection Transformations
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void glOrtho (GLdouble left, GLdouble right, GLdouble
bottom,
GLdouble top, GLdouble near, GLdouble far);

void gluOrtho2D (GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top) ;



&

View/Model Transformations

* The order of operations matters!
* How to rotate CW 90°?
e Solution?

Rotate (90)

Ant position = a

Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t
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View/Model Transformations

* The order of operations matters!
* How to rotate CW 90°?
e Solution?

Rotate (90)

Ant position = a

Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t
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View/Model Transformations

* The order of operations matters!
* How to rotate CCW 90°?
e Solution?

Ant position = a

Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t
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View/Model Transformations

* The order of operations matters!
* How to rotate CCW 90°?
e Solution?

Translate (-a)

Ant position = a

Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t



View/Model Transformations

* The order of operations matters!
* How to rotate CCW 90°?
e Solution?

Translate (-a)
Rotate (-90)

S

Ant position = a
Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t
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View/Model Transformations

* The order of operations matters!
* How to rotate CCW 90°?
e Solution?

Translate (-a)
Rotate (-90)
Translate (a)

Ant position = a

Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t
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View/Model Transformations

* The order of operations matters!

e How to rotate CCW 90Q°?
e What if | rotate first?

Ant position = a

Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t
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View/Model Transformations

* The order of operations matters!

e How to rotate CCW 90Q°?
e What if | rotate first?

He

Rotate (-90)

Ant position = a
Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t



View/Model Transformations

* The order of operations matters!

e How to rotate CCW 90Q°?
e What if | rotate first?

Rotate (-90)
Translate (-a)

[assuming a was updated to
new position] 4

Ant position = a
Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t
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View/Model Transformations

* The order of operations matters!

e How to rotate CCW 90Q°?
e What if | rotate first?

Rotate (-90) :%

Translate (-a)
Translate (a)

Ant position = a
Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t
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View/Model Transformations

* |In matrix form:

rMat = RotateMat (-90)
inv_tMat = TranslateMat(-a)
tMat = TranslateMat (a)

p’ = tMat * rMat * inv tMat * p

(rotates points p of the ant “about itself”)

p’ = tMat * inv tMat * rMat * p = rMat * p
(rotates points p of the ant around the origin



Change of Basis Tra nsformatiori &9

 Standard basis:

|y =ro10] r

x=[100]

z=1[001]



Change of Basis Transformation iy

 Standard basis:
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Change of Basis Transformation

 Standard basis:
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X = [0 1 0] Where is point [abc] in
) basis S?
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Change of Basis Transformation 4

* Basis B:

V= [vx vy vz]

Where is point [p, p, p,']
from basis B-?

Px px,
Py| = B py’
Pz Ps




Change of Basis Transformatior &

* Basis B:

V= [vx vy vz]

ux v X w x
B=uy Uy Wy
uZ v VA4 w z
to4 4

uT ‘UT WT

Where is point [p'yp’yp’,] in

basis B?
Px px’
py =B py’
Pz 128




&

Change of Basis Transformation

* |In matrix form:

// change p’ from basis b to standard basis
bMat = makeBasisMat (u,v,w)

p’ = position(1l,1,1)

p = bMat * p’

// change from standard to basis B
p’ = inverse(bMat) * p
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Change of Basis Transformation

 What else is this change of basis useful for?
— Rotating to an arbitrary basis

— “l was in basis frame (x,y,z) and now | want to
rotate to be basis frame (u,v,w)”



Change of Basis Transformation@

e Recall we did “inverse(bMat)”

e What is the inverse of matrix?
B 1B =]

* A nice property:

— If B is formed by orthogonal basis vectors, then its

inverse is simply:
B 1=BT=|(vx v, 7,

Uy Uy U
Wy Wy, WZ]
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