
Camera Models

Fall 2023

Daniel G. Aliaga
Department of Computer Science

Purdue University

Typical OpenGL Matrices

• Projection Matrix

– Defines the projection process: perspective,
orthographic, etc.

• ModelView Matrix (or View Matrix)

– Defines where is the camera

• Model Matrices

– Applied to geometry/model to define scene objects

• Texture Matrix

– Is applied to the “texture” (more on this later)

Transformations

• Most popular transformations in graphics

– Translation

– Rotation

– Scale

– Projection

• In order to use a single matrix for all, we use
homogeneous coordinates (we talked about
this already)

3D Transformations

3D Transformations

Perspective projection

Projection Transformations

void glFrustum(GLdouble left, GLdouble right, GLdouble

bottom, GLdouble top, GLdouble near, GLdouble far);

Projection Transformations

void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble

near, GLdouble far);

Projection Transformations

void glOrtho(GLdouble left, GLdouble right, GLdouble

bottom,

GLdouble top, GLdouble near, GLdouble far);

void gluOrtho2D(GLdouble left, GLdouble right,

GLdouble bottom, GLdouble top);

View/Model Transformations

• The order of operations matters!

• How to rotate CW 90o?

• Solution?

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t

Rotate(90)

View/Model Transformations

• The order of operations matters!

• How to rotate CW 90o?

• Solution?

Rotate(90)

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• Solution?

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• Solution?

Translate(-a)

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• Solution?

Translate(-a)

Rotate(-90)

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• Solution?

Translate(-a)

Rotate(-90)

Translate(a)

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• What if I rotate first?

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t

Previous solution:

 Translate(-a)

 Rotate(-90)

 Translate(a)

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• What if I rotate first?

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t

Previous solution:

 Translate(-a)

 Rotate(-90)

 Translate(a)

Rotate(-90)

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• What if I rotate first?

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t

Previous solution:

 Translate(-a)

 Rotate(-90)

 Translate(a)

Rotate(-90)

Translate(-a)

[assuming a was updated to

new position]

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• What if I rotate first?

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t

Previous solution:

 Translate(-a)

 Rotate(-90)

 Translate(a)

Rotate(-90)

Translate(-a)

Translate(a)

View/Model Transformations

• In matrix form:

rMat = RotateMat(-90)

inv_tMat = TranslateMat(-a)

tMat = TranslateMat(a)

p’ = tMat * rMat * inv_tMat * p

(rotates points p of the ant “about itself”)

p’ = tMat * inv_tMat * rMat * p = rMat * p

(rotates points p of the ant around the origin

Change of Basis Transformation

• Standard basis:

𝒚 = [𝟎 𝟏 𝟎]

𝒙 = [𝟏 𝟎 𝟎]

𝒛 = [𝟎 𝟎 𝟏]

𝒛𝑻

𝑺 =
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

𝒙𝑻 𝒚𝑻

Change of Basis Transformation

• Standard basis:

𝒚 = [𝟎 𝟏 𝟎]

𝒙 = [𝟎 𝟏 𝟎]

𝒛 = [𝟎 𝟏 𝟎]

𝒛𝑻

𝑺 =
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

𝒙𝑻 𝒚𝑻

Where is point [𝒂 𝒃 𝒄] in
basis S?

𝒑𝒙

𝒑𝒚

𝒑𝒛

= 𝑺
𝒂
𝒃
𝒄

[𝒂 𝒃 𝒄]

Change of Basis Transformation

• Standard basis:

𝒚 = [𝟎 𝟏 𝟎]

𝒙 = [𝟎 𝟏 𝟎]

𝒛 = [𝟎 𝟏 𝟎]

𝒛𝑻

𝑺 =
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

𝒙𝑻 𝒚𝑻

Where is point [𝒂 𝒃 𝒄] in
basis S?

𝒑𝒙

𝒑𝒚

𝒑𝒛

= 𝑺
𝒂
𝒃
𝒄

𝒂 𝒃 𝒄 𝑻

𝒑𝒙 𝒑𝒚 𝒑𝒛
𝑻

Change of Basis Transformation

• Basis B:

𝒖 = [𝒖𝒙 𝒖𝒚 𝒖𝒛]

𝒘 = [𝒘𝒙 𝒘𝒚 𝒘𝒛]

𝑩 =

. . .

. . .

. . .

 What is B?

Where is point [𝒑𝒙′ 𝒑𝒚′ 𝒑𝒛′]
from basis B?

𝒑𝒙

𝒑𝒚

𝒑𝒛

= 𝑩

𝒑𝒙′

𝒑𝒚′

𝒑𝒛′

𝒗 = [𝒗𝒙 𝒗𝒚 𝒗𝒛]

𝒑𝒙′ 𝒑𝒚′ 𝒑𝒛′
𝑻

Change of Basis Transformation

• Basis B:

𝒖 = [𝒖𝒙 𝒖𝒚 𝒖𝒛]

𝒘 = [𝒘𝒙 𝒘𝒚 𝒘𝒛]

𝑩 =

𝒖𝒙 𝒗𝒙 𝒘𝒙

𝒖𝒚 𝒗𝒚 𝒘𝒚

𝒖𝒛 𝒗𝒛 𝒘𝒛

Where is point [𝒑′𝒙 𝒑′𝒚 𝒑′𝒛] in
basis B?

𝒗 = [𝒗𝒙 𝒗𝒚 𝒗𝒛]

𝒑𝒙 𝒑𝒚 𝒑𝒛
𝑻

𝒖𝑻 𝒗𝑻 𝒘𝑻
𝒑𝒙′ 𝒑𝒚′ 𝒑𝒛′

𝑻

𝒑𝒙

𝒑𝒚

𝒑𝒛

= 𝑩

𝒑𝒙′

𝒑𝒚′

𝒑𝒛′

Change of Basis Transformation

• In matrix form:

// change p’ from basis b to standard basis

bMat = makeBasisMat(u,v,w)

p’ = position(1,1,1)

p = bMat * p’

// change from standard to basis B

p’ = inverse(bMat) * p

Change of Basis Transformation

• What else is this change of basis useful for?

– Rotating to an arbitrary basis

– “I was in basis frame (x,y,z) and now I want to
rotate to be basis frame (u,v,w)”

Change of Basis Transformation

• Recall we did “inverse(bMat)”

• What is the inverse of matrix?
𝐵−1𝐵 = 𝐼

• A nice property:

– If 𝐵 is formed by orthogonal basis vectors, then its
inverse is simply:

𝐵−1 = 𝐵𝑇 =

𝑢𝑥 𝑢𝑦 𝑢𝑧

𝑣𝑥 𝑣𝑦 𝑣𝑧

𝑤𝑥 𝑤𝑦 𝑤𝑧

	Slide 1: Camera Models
	Slide 2: Typical OpenGL Matrices
	Slide 3: Transformations
	Slide 4: 3D Transformations
	Slide 5: 3D Transformations
	Slide 6: Projection Transformations
	Slide 7: Projection Transformations
	Slide 8: Projection Transformations
	Slide 9: View/Model Transformations
	Slide 10: View/Model Transformations
	Slide 11: View/Model Transformations
	Slide 12: View/Model Transformations
	Slide 13: View/Model Transformations
	Slide 14: View/Model Transformations
	Slide 15: View/Model Transformations
	Slide 16: View/Model Transformations
	Slide 17: View/Model Transformations
	Slide 18: View/Model Transformations
	Slide 19: View/Model Transformations
	Slide 20: Change of Basis Transformation
	Slide 21: Change of Basis Transformation
	Slide 22: Change of Basis Transformation
	Slide 23: Change of Basis Transformation
	Slide 24: Change of Basis Transformation
	Slide 25: Change of Basis Transformation
	Slide 26: Change of Basis Transformation
	Slide 27: Change of Basis Transformation

