Camera Models

Fall 2023

Daniel G. Aliaga
Department of Computer Science
Purdue University

Typical OpenGL Matrices

Projection Matrix

— Defines the projection process: perspective,
orthographic, etc.

ModelView Matrix (or View Matrix)

— Defines where is the camera

Model Matrices
— Applied to geometry/model to define scene objects

Texture Matrix
— Is applied to the “texture” (more on this later)

Transformations

* Most popular transformations in graphics
— Translation
— Rotation
— Scale
— Projection
* |n order to use a single matrix for all, we use

homogeneous coordinates (we talked about
this already)

|
0
0
0

|dentity

|
0
0
0

Translation

3D Transformations

0
|
0
0

0
|
0
0

0
0
1
0

0
0
|
0

0
0
0

X

=
|

b sx 0 0
v 10 sy 0
S0 0 s
w| | 0 0 0

Scale
X' [—=1 0 0
B O I I)
~! 10 0 1
w| | 0 0 0

0
0

0

0
0
0
1

W

Mirror over X axis

Ly =

3D Transformations

Rotate around Z axis:

Rotate a_ro_und Y axis:

X' Jcos® —sin® 0
V' _|smm® cos® 0
=] 0 0 1
W 0 0 0

X Jcog® 0 —sin®
VI_| 0 1 0
T san® 0 cos®
W 0 0 0
Rotate around X axis:

X'l J1 0 0

V' _10 cos® —sn®
S0 sin® cos®
W 0 0 0

0
0
0

0
0

0
0
|

0]

0]

22, ey
F—I F—I
0 2m t+ b 0
t—b t—b
—(f+n) —1fn
f-n f-n
0 {0 -1 {0

Perspective projection

Projection Transformations @

- = -
- -

void glFrustum(GLdouble left, GLdouble right, GLdouble
bottom, GLdouble top, GLdouble near, GLdouble far);

Projection Transformations @

void gluPerspective (GLdouble fovy, GLdouble aspect, GLdouble
near, GLdouble far);

&

Projection Transformations

- .-"mp
A
laﬂ—sl I N
- kS
mﬁ:nm “L right
viewpaint

MZ S

near far

void glOrtho (GLdouble left, GLdouble right, GLdouble
bottom,
GLdouble top, GLdouble near, GLdouble far);

void gluOrtho2D (GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top) ;

&

View/Model Transformations

* The order of operations matters!
* How to rotate CW 90°?
e Solution?

Rotate (90)

Ant position = a

Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t

&

View/Model Transformations

* The order of operations matters!
* How to rotate CW 90°?
e Solution?

Rotate (90)

Ant position = a

Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t

&

View/Model Transformations

* The order of operations matters!
* How to rotate CCW 90°?
e Solution?

Ant position = a

Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t

&

View/Model Transformations

* The order of operations matters!
* How to rotate CCW 90°?
e Solution?

Translate (-a)

Ant position = a

Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t

View/Model Transformations

* The order of operations matters!
* How to rotate CCW 90°?
e Solution?

Translate (-a)
Rotate (-90)

S

Ant position = a
Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t

&

View/Model Transformations

* The order of operations matters!
* How to rotate CCW 90°?
e Solution?

Translate (-a)
Rotate (-90)
Translate (a)

Ant position = a

Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t

&

View/Model Transformations

* The order of operations matters!

e How to rotate CCW 90Q°?
e What if | rotate first?

Ant position = a

Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t

&

View/Model Transformations

* The order of operations matters!

e How to rotate CCW 90Q°?
e What if | rotate first?

He

Rotate (-90)

Ant position = a
Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t

View/Model Transformations

* The order of operations matters!

e How to rotate CCW 90Q°?
e What if | rotate first?

Rotate (-90)
Translate (-a)

[assuming a was updated to
new position] 4

Ant position = a
Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t

&

View/Model Transformations

* The order of operations matters!

e How to rotate CCW 90Q°?
e What if | rotate first?

Rotate (-90) :%

Translate (-a)
Translate (a)

Ant position = a
Rotate(d) : rotate CW by d degrees
Translate(t) : translate by vector t

&

View/Model Transformations

* |In matrix form:

rMat = RotateMat (-90)
inv_tMat = TranslateMat(-a)
tMat = TranslateMat (a)

p’ = tMat * rMat * inv tMat * p

(rotates points p of the ant “about itself”)

p’ = tMat * inv tMat * rMat * p = rMat * p
(rotates points p of the ant around the origin

Change of Basis Tra nsformatiori &9

 Standard basis:

|y =ro10] r

x=[100]

z=1[001]

Change of Basis Transformation iy

 Standard basis:

|y=1010)

.[ab c]

x=1[010]

z=[010]

= O
——

> O RO
N_’

=
ﬂ
<

Where is point [abc] in
basis S?
a
b]
c

Px
Dy
P:

=S

Z@®)
) "\

PUR T
©

Change of Basis Transformation

 Standard basis:

|y=1010] [1

=]
- O MmO
- O
—_—

[abc]T
° T
[px Py D]

T ,T

=
~

<

N

X = [0 1 0] Where is point [abc] in
) basis S?
a
b]
c

Dx
Dy
Pz

=S

z=[010]

Change of Basis Transformation 4

* Basis B:

V= [vx vy vz]

Where is point [p, p, p,']
from basis B-?

Px px,
Py| = B py’
Pz Ps

Change of Basis Transformatior &

* Basis B:

V= [vx vy vz]

ux v X w x
B=uy Uy Wy
uZ v VA4 w z
to4 4

uT ‘UT WT

Where is point [p'yp’yp’,] in

basis B?
Px px’
py =B py’
Pz 128

&

Change of Basis Transformation

* |In matrix form:

// change p’ from basis b to standard basis
bMat = makeBasisMat (u,v,w)

p’ = position(1l,1,1)

p = bMat * p’

// change from standard to basis B
p’ = inverse(bMat) * p

&

Change of Basis Transformation

 What else is this change of basis useful for?
— Rotating to an arbitrary basis

— “l was in basis frame (x,y,z) and now | want to
rotate to be basis frame (u,v,w)”

Change of Basis Transformation@

e Recall we did “inverse(bMat)”

e What is the inverse of matrix?
B 1B =]

* A nice property:

— If B is formed by orthogonal basis vectors, then its

inverse is simply:
B 1=BT=|(vx v, 7,

Uy Uy U
Wy Wy, WZ]

	Slide 1: Camera Models
	Slide 2: Typical OpenGL Matrices
	Slide 3: Transformations
	Slide 4: 3D Transformations
	Slide 5: 3D Transformations
	Slide 6: Projection Transformations
	Slide 7: Projection Transformations
	Slide 8: Projection Transformations
	Slide 9: View/Model Transformations
	Slide 10: View/Model Transformations
	Slide 11: View/Model Transformations
	Slide 12: View/Model Transformations
	Slide 13: View/Model Transformations
	Slide 14: View/Model Transformations
	Slide 15: View/Model Transformations
	Slide 16: View/Model Transformations
	Slide 17: View/Model Transformations
	Slide 18: View/Model Transformations
	Slide 19: View/Model Transformations
	Slide 20: Change of Basis Transformation
	Slide 21: Change of Basis Transformation
	Slide 22: Change of Basis Transformation
	Slide 23: Change of Basis Transformation
	Slide 24: Change of Basis Transformation
	Slide 25: Change of Basis Transformation
	Slide 26: Change of Basis Transformation
	Slide 27: Change of Basis Transformation

