
CS334/ECE30834: Assignment #3 - Map it!

Normal Mapping + Shadow Mapping

Out: September 29, 2023

Back/Due: October 20th, 2023, 11:59 PM

Objective:

The objective of this assignment is to help you understand texture mapping, bump mapping /

normal mapping, and shadow mapping. First, you will learn how to introduce more details to the

existing lighting system using normal mapping, which increases the complexity of the illusion on

the surface; then you will have a feeling of how shadows improve the sense of depth and

immersion in the scene.

Summary:

In this assignment, you are provided with a scene with several cubes placed on a plane. For

simplicity, there is only one directional light source. Your first task is adding normal mapping

(also called bump mapping) to the illumination system, for which you need first to calculate

tangent/bitangent vectors and then, in the shader, construct the TBN coordinate system and

convert the computation of lighting from world space to tangent space. In the second task, the

scene will be rendered twice. In the first pass, it is rendered from the light’s perspective to get the

depth map as texture, in the second pass the scene is just rendered as normal. So you have first to

calculate the matrix to convert the scene from world space to the light’s viewing space (the goal

is to get the depth map which will be used as a texture in the second pass), then in the shader,

you need to implement a function to decide whether a fragment is in shadow.

Specifics:

1. Start with the templates from the course website. The templates support Windows and

Linux environments. Compile and run the templates. Both templates come with keyboard

and mouse controls that allow you to rotate the view, move and rotate the light sources,

change the viewing modes, and alter the light and material properties. Read the

command-line output for an overview of the provided controls. Upon starting the

program, a config file config.txt is read that gives default values for the

abovementioned properties. Feel free to modify this file when testing your code. You

may also provide an alternative configuration file as a command-line argument. The

textures (also the normal maps) are put under textures/.

2. Model loading and setup. The models used in this assignment are sphere.obj and

plane.obj, whose format is more complex than the models in the previous assignment

since texture coordinates are involved. For the specification of OBJ files, you can refer to

the instructions here. In config.txt, rotation matrices and translation vectors are also

https://en.wikipedia.org/wiki/Wavefront_.obj_file

included to give the objects an initial position. The scene only has one directional light.

You can use a keyboard/mouse to change the position of the light/objects.

3. Normal mapping (60%). The normals in normal maps are in their local coordinate

systems (i.e. tangent space/TBN space). To ensure correct lighting, you have to obtain the

TBN system for each face and then convert all related light vectors to this system and

compute the shading.

● Tangents and bitangents (20%). In mesh.cpp, you need to complete the

load function Under TODO 1. For each triangle of the mesh, given the positions

and the texture coordinates of the three vertices, you need to calculate tangent and

bitangent vectors, and then store them to vertices, so that they can be passed to

shaders. From the lecture slides, you can find the procedure to get them.

● Tangent space (20%). It is a space local to the surface of the model. It consists of

normal, tangent and bitangent vectors. Normal is already given as face normal. In

the image below, normal is pointing out of the image, the pink arrows are

bitangents and the green ones are tangents. In the vertex shader under

TODO 2, you need to set up the TBN system and then convert the related

lighting vectors (light position, viewer vector and fragment position) to tangent

space, before passing them to the fragment shader.

• Spherical Projection UVs (10%). In the vertex shader there is an option

to draw using the UV values read in from the .obj file for the sphere model, or to

instead use the spherical projection of the UV coordinates to better wrap square

texture onto the sphere. You should calculate the spherical projection texture

coordinates as discussed in the lecture slides and implement it under TODO 3. If

you do it all correctly, you should see the spheres textured like this:

● Normal calculation (10%). The normal map is given as texCubeNorm. In

TODO 4 in the fragment shader you need to get the normal from the

texture and remap it from the storage range to the expected range for normals. If

you calculate it correctly, you will see the result below (when you turn on normal

mapping mode by pressing m/M):

Turning on normal mapping v.s. Turning off:

4. Shadow Mapping (40%). In the implementation of shadow mapping, there will be two

passes.

In the first pass, to decide what is visible and what is invisible (thus in shadow), you will

render the scene from the light’s perspective. To generate the depth map/shadow map,

this stage requires two very simple shaders (called depth_v.glsl and depth_f.glsl, already

provided).

● Render from light (20%). You need to finish the paintGL function of

glstate.cpp. Your task is calculating lightSpaceMat, which is the

transform matrix to convert the scene to the light’s space. To do that, you may

first get lightProj and lightView matrices and then use them to obtain

lightSpaceMat. Then it is passed into depth_v.glsl to transform the scene to

the light’s viewing space. Before the second pass, the depth map/shadow map is

generated as texture and will be used for testing shadows. And this time the scene

is rendered from the camera’s space.

● Shadow testing (20%). The shadow map is given as shadowMap in the

fragment shader. Your job is to implement the function calculateShadow in

the shader. In this function, you will first read the closest depth value from the

depth map, then get the depth of the current fragment, and compare them to

decide whether this fragment is in shadow. The current parameter

light_frag_pos is the fragment position in light’s space. Feel free to add

other arguments to the function if you think they are necessary. Finally apply

shadow to the diffuse term (shadow should have no effect on the ambient term).

You shall see the result as below:

5. Soft Shadows (Bonus)

Bump mapping and shadow mapping are both faster approximations of much more

complex global illumination characteristics. To extend this approximation, you can

implement soft shadows by sampling from the shadow map multiple times with some

jitter. To aid this, there is a function randFloat(uint x) that will return a float in the range

[0-1] if you wish to use it to generate the offsets. Just like in assignment 2, you can

integrate the values of multiple samples together to approximate a soft shadow. The

variables RADIUS and NUM_SAMPLES are also defined for your use in this task.

Here is some light reading on sampling techniques and efficient soft shadows calculation

from shadow maps. It goes into ways to intelligently calculate the number of samples

needed to avoid GPU thread divergence.

Proper soft shadow implementation could look like this:

https://developer.nvidia.com/gpugems/gpugems2/part-ii-shading-lighting-and-shadows/chapter-17-efficient-soft-edged-shadows-using

Soft Shadow Implementation Example

6. The functions/methods requiring your implementation will be marked “TODO”;

however, depending on your particular implementation there might be other places for

you to change code. You are expected to add/modify the code as necessary to ensure the

application runs smoothly.

Turn-in:

To give in the assignment, please use Brightspace. Give in a zip file with your complete

project (project files, and source code). Please delete the following directories when

submitting for file size reasons: .vs/, .git/, x64/

It is your responsibility to make sure the assignment is delivered/dated before it is due. If

you wish to receive confirmation of receipt, please ask by email in advance.

Don’t wait until the last moment to hand in the assignment!

For grading, the program will be compiled on Linux and run from the terminal (with Visual

Studio as a fallback – please try to avoid platform-specific code (e.g., don’t #include

<windows.h>)), run without command line arguments, and the code will be inspected. If the

program does not compile, zero points will be given. If you have more questions, please ask on

Piazza!

Good luck!

