
CS334/ECE30834: Assignment #2 - GPU it!
Basic Lighting and Normals Calculation

Out: Sep 15, 2023
Back/Due: Sep 29, 2023, 11:59 AM

Objective:
This assignment is designed to give you some experience with GPU ray-tracing using fragment
shaders.

Summary:
Before getting started, as the main contents are implemented in GPU code, a time-saving trick is
to dynamically load the GPU shader code into your running program. So you will be guided to
apply this trick as a warm-up.

For the main content, you are given a scene with a sphere, a ground plane, a sky background and
a point light source. You will first have to implement the ray-sphere intersection, and compute
surface normals for the sphere and plane. Then, you need to implement the shading function that
defines the surface color using the Phong shading model. You will learn how to render
second-order lighting effect reflection and hard shadow as a first step to understanding ray
tracing. A bonus task is to render soft shadows using ray tracing.

If you implement everything correctly (including bonus), you should have a view like this video:

https://youtu.be/r-DWP-pyCtY


Specifics:
1. Warm-up

Start with the template from the course website, similar to previous assignments.
Previous assignments are C++ codes, any changes need to be recompiled and then run the
executive in CPU again. In this assignment, most of the codes are in the
shaders/f.glsl file, which is the shading language and is executed in GPU. GLSL
programming language is very similar to C. You can define struct, but cannot define
class. You can define functions, global variables, etc. There is no need to rely on glm
library to use data structures like vec2, vec3, vec4, mat3, mat4. Those data structures are
built-in in GLSL.

We implement a small trick here for efficiently developing GPU code: “hot-update” the
GPU code. To achieve this, you must add one line of code in the main.cpp L-123. Later
on, you just need to press r, and your modification in shaders/f.glsl can be
compiled on-the-fly and executed automatically without re-opening your program if your
shaders/f.glsl does not have a grammar error. To test the feature, after
implementing the TODO 1, try add one line of code “outCol = vec3(1.0, 0.0, 0.0);” after
“outCol = shading(ro, rd, intersect);” in the shaders/f.glsl file. You should see a
red screen when you press r without re-opening the executive.
And then you can delete the new line, and press r to see if it changes back.

2. Ray-sphere intersection
Given a ray origin (ro), a ray direction (rd), a sphere center, and its radius, do you know
how to find if the ray has an intersection with the sphere? It the ray does intersect with
the sphere, how to calculate the intersection point?
Relevant codes can be found in TODO2.
The correct implementation should have this view:

https://www.khronos.org/opengl/wiki/OpenGL_Shading_Language


3. Normal Calculation
Lighting models require knowledge of the surface's normal direction to produce realistic
effects. In previous assignments, surface normals were read directly from the mesh files,
but in this assignment, you need to manually compute the normal for the sphere in
shaders/f.glsl.
In TODO 3, “pos” is the surface point on the sphere. The global vec4 variable “sphere”
defines the sphere shape. The xyz component of “sphere” is the sphere center position.
The w component of “sphere” is the radius of the sphere. Given the surface point and
sphere center, you should be able to calculate the normal easily.

The correct implementation should have a similar view:



4. Phong Shading
After completing the normal calculation, you can begin implementing the Phong
illumination model. Lighting calculations happen in the fragment shader, where you can
access all needed lighting and material information. Each light source affects the scene
with three components: ambient, diffuse, and specular, described below. Lights have an
associated light color, which modulates each of the below components, and a light
position, which determines the position of the light. Additionally, the object in the scene
has its own color, which is multiplied by the contribution of each light, as well as
material properties that determine the relative strength of each of the below components.
Ambient. Ambient light approximates indirect lighting, where light rays bounce around
the scene before striking the object. In practice, this is implemented as a simple additive
term that does not depend on light or view directions. The strength of the ambient term is
determined by the ambStr uniform, which has a value between 0 and 1.
Diffuse. Diffuse lighting approximates the amount of light that hits the surface based on
the angle between the surface normal and the incident light vector. The more closely
aligned the normal vector and the light direction are, the brighter the surface. This is
modeled by the cosine of the angle between these two vectors. Additionally, the strength
of the diffuse term is controlled by the diffuse_str.
Specular. Specular highlighting occurs when light is reflected off the surface directly
toward the viewer. The incident light direction is reflected across the surface normal, and
the cosine of the angle between the viewing direction and the reflected light direction
determines the brightness of the highlight. The highlight is further modified by an
exponent, spec_exp, that determines the glossiness of the object, and the strength of
the specular term is given by specular_str.

Diffuse Specular
Write your implementation in the fragment shader, shaders/f.glsl TODO 4 and 5.
Note, TODO 4 is about shading, TODO 5 is the specific implementation of reflection.
GLSL has a built-in function called reflect, which should not be used in your homework.
The reflection equation is:

Where I is the incoming vector, the N is the surface normal.



The correct implementation should have this view:

5. Specular Reflection & hard shadow
Reflection is an effect when the ray hits an object, a flat surface will reflect the ray, and
the reflected ray may hit some other objects in the scene, as introduced in the ray tracing
lecture. Here we implement a very simple reflection effect to visualize the reflection
effects. The idea is to shoot ray based on the specular reflection, use the pre-defined
ray-scene intersection function to get the intersection result. And replace the light color in
the previous Phong shading model to see the reflection effects. See TODO 6.

The hard shadow is an occlusion effect that happens when an object is in between of the
surface and the light. Try to shoot shadow ray from the surface to the light, test if the ray
is occluded or not to decide if the object is in shadow or not. See TODO 7.

The correct implementation should have this view:



6. Soft Shadows (Bonus)
Soft shadow is caused by area lights. To earn bonus point, you are suggested to shoot
several shadow rays to a sphere light instead of a point light. Integrate the shadow ray
results and replace the hard shadow factor with the integration result to see the soft
shadow effects.
We have provided some global variables and helper functions for you to use:

- N_POINTS: sample N points in the sphere light
- Vec3 random_sphere_point(int i): given an integer i, this function returns a

random point on the unit sphere
- SMALL_SPHERES_RADIUS: a variable to control the sphere light

radius. Tweaking this value to 0 leads to the hard shadow result.
The correct implementation should have this view (also refer to this video as a reference):

https://youtu.be/r-DWP-pyCtY


Turn-in:
To give in the assignment, please use Brightspace. Give in a zip file with your complete
project (project files, source code, and precompiled executable). The assignment is due
BEFORE class on the due date. It is your responsibility to make sure the assignment is
delivered/dated before it is due. If you wish to receive confirmation of receipt, please ask by
email in advance.

Don’t wait until the last moment to hand in the assignment!

For grading, the program will be compiled on Linux and run from the terminal (with Visual
Studio as a fallback – please try to avoid platform-specific code (e.g., don’t #include
<windows.h>)), run without command line arguments, and the code will be inspected. If the
program does not compile, zero points will be given. If you have more questions, please ask on
Piazza!

Start early and good luck!


