
CS33400/ECE30834: Assignment #0 - Cook it!
OpenGL/FreeGLUT Warm-up

Out: August 22, 2023
Back/Due: September 01, 2023, 11:59 PM
Objective:
The objective of this assignment is a simple warm-up program to help set up your programming 
and graphics environment. This assignment will require you to set up a shell programming 
environment for this and future assignments, using OpenGL with FreeGLUT on Windows or 
Linux. It is to your benefit to write the program modularly and with a clean setup so as to 
facilitate subsequent assignments. You have 1.25 weeks but it should take you much less time
(20 hours or less). The FreeGLUT framework is barebones, but easy to set up. If you want to use 
a different framework, contact the TAs with your request (note that you still must use OpenGL 
within your framework).

Summary:
The assignment is to implement a program that simulates a bouncing ball. The program includes 
a bouncing ball and a bar (the ball will bounce when it hits the bar) inside an imaginary box. You 
may use whatever OpenGL commands you wish but probably you need to add some simple 
matrix math operations. You also need to design a simple physics engine to enable gravity so that 
the ball will fall like in the real world. You don’t need to use 9.8 as the acceleration, just choose a 
value that makes the animation look smooth and visually plausible. Another feature is moving the 
bar up/down with the right click of the mouse.



Specifics:
1. Start with the template from the course website. You may develop under Windows or

Linux (the TAs do not have a Mac to grade with – if your only dev environment is
MacOS, please realize that you may encounter difficulties and the TAs may not be able to
help, But you can always use a virtual machine or the lab machines). For the template,
see the README.txt for details on compiling and running.

2. Compile and run the template. The image above shows what you will see when running
the template (the red line at the bottom is the bar). Now everything is still since the
physics engine and the refresh mechanism have not been added. Read the code to
understand how it works, and then make the changes below.

3. Start with glstate.cpp. You will need to define some global variables indicating the status
of the ball: the vertical position (it is already given as yLoc), velocity, radius and
acceleration of the ball. After your complete implementation, you may need to try
modifying these values and find the best ones. It is suggested that you start with small
values (e.g., 0.0001 for the acceleration, but that also depends on how you design the
physics and the refresh mechanism) since it makes the debugging simpler. Then you
should update the global values you defined in other appropriate places in the template.

4. Implement the physics engine inside GLState::paintGL in glstate.cpp. The function
paintGL will be called every frame, so you need to update the ball’s status: its vertical
position (yLoc) and velocity.
Firstly do the bouncing check: when the ball hits the bar (note that you have to take the
ball’s radius into consideration), its velocity should be reversed. Also, update other
variables you think are necessary.
Secondly, draw the updated ball. Simply call glm::translate and pass the updated yLoc so
that the ball will be moved to its new position in the next frame. We use objXform to
represent the transformation applied to the ball.

5. Implement the left click feature inside GLState::paintGL in glstate.cpp. In the function
paintGL, we use lineXform to represent the transformations applied on the bar. The initial
position of the bar is saved in GLState::initLinePos, and the current position of the bar is
saved as linePos. Similar to how the ball is moved, use glm::translate to move the bar to
the place where the left click happens, and save the matrix in lineXform.

6. In function GLState::moveBall, after the ball is moved, reset the velocity with the initial
value you defined.

7. The template code does not automatically update the screen for each frame. For a moving
object, you will need to repeatedly tell the windowing framework to redraw the screen.
Use the idle function with glutPostRedisplay and elapsed in main.cpp.

8. The code lines requiring your implementation are marked “TODO”; however, depending
on your particular implementation there might be other places for you to change code.
You are expected to add/modify the code as necessary to make sure the application runs
smoothly.



Turn-in:
To give in the assignment, please use Brightspace. Give in a zip file with your complete
project (project files, source code, and precompiled executable). The assignment is due
BEFORE class on the due date. It is your responsibility to make sure the assignment is
delivered/dated before it is due. If you wish to receive confirmation of receipt, please ask by
email in advance.

Don’t wait until the last moment to hand in the assignment!

For grading, the program will be compiled on Linux and run from the terminal (with Visual
Studio as a fallback – please try to avoid platform-specific code (e.g., don’t #include
<windows.h>)), run without command line arguments, and the code will be inspected. If the
program does not compile, zero points will be given.

Good luck!


