Image/View Morphing and Warping

CS334

Daniel G. Aliaga
Department of Computer Science
Purdue University
Motivation – Rendering from Images

• Given
 – left image
 – right image

• Create intermediate images
 – simulates camera movement

[Seitz96]
Related Work

• Panoramas (e.g., QuicktimeVR, etc)
 – user can look in any direction at few given locations but camera translations are not allowed...
Topics

• Image morphing (2D)
• View morphing (2D+)
• Image warping (3D)
Topics

• Image morphing (2D)
• View morphing (2D+)
• Image warping (3D)
Image Morphing

[Images of three individuals]
Image Morphing

• Identify correspondences between input/output image

• Produce a sequence of images that allow a smooth transition from the input image to the output image
Image Morphing

1. Correspondences
1. Correspondences
Image Morphing

1. Correspondences
Image Morphing

1. Correspondences
1. Correspondences

2. Linear interpolation

\[P_k = (1 - \frac{k}{n})P_0 + \frac{k}{n}P_n \]
Image Morphing

Image morphing is not shape preserving
Topics

• Image morphing (2D)
• View morphing (2D+)
• Image warping (3D)
View Morphing
View Morphing

• Shape preserving morph
• Three step algorithm
 – Prewarp first and last images to parallel views
 – Image morph between prewarped images
 – Postwarp to interpolated view
Step 1: prewarp to parallel views

- **Parallel views**
 - same image plane
 - image plane parallel to segment connecting the two centers of projection

- **Prewarp**
 - compute parallel views I_{0p}, I_{np}
 - rotate I_0 and I_n to parallel views
 - prewarp correspondence is $(P_0, P_n) \rightarrow (P_{op}, P_{np})$
Step 2: morph parallel images

- Shape preserving
- Use prewarped correspondences
- Interpolate C_k from C_0 C_n
Step 3: postwarp image

• Postwarp morphed image
 – create intermediate view
 • C_k is known
 • interpolate view direction and tilt
 – rotate morphed image to intermediate view
View morphing
View morphing

- View morphing is shape preserving
View Morphing Examples

• Using computer vision/stereo reconstruction techniques
Intuitively, how do you compute the matrix M by which to transform P_0 to P_{0p}?
Image Transformations

• A geometric relationship between input \((u,v)\) and output pixels \((x,y)\)

 – Forward mapping:
 \[(x,y) = (X(u,v), Y(u,v))\]

 – Inverse mapping:
 \[(u,v) = (U(x,y), V(x,y))\]
Image Transformations

• General matrix form is

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
 u \\
 v \\
 w
\end{bmatrix}
= \begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
\]

and operates in the “homogeneous coordinate system”.
Affine Transformations

• Matrix form is

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 u \\
 v \\
 w
\end{bmatrix}
=
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
\]

and accommodates translations, rotations, scale, and shear.

• How many unknowns? How to create matrix?
Affine Transformations

• Transformation can be inferred from correspondences; e.g.,

\[
\begin{bmatrix}
 u_i \\
 v_i \\
 w_i
\end{bmatrix}
\leftrightarrow
\begin{bmatrix}
 x_i \\
 y_i \\
 z_i
\end{bmatrix}
\]

• Given ≥3 correspondences can solve for T
Perspective/Projective Transformations

• Matrix form is

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & 1 \\
\end{bmatrix}
\begin{bmatrix}
 u \\
 v \\
 w \\
\end{bmatrix} =
\begin{bmatrix}
 x \\
 y \\
 z \\
\end{bmatrix}
\]

and it accommodates foreshortening of distant line and convergence of lines to a vanishing point; also, straight lines are maintained but not their mutual angular relationships, and only parallel lines parallel to the projection plane remain parallel.
Perspective/Projective Transformations

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & 1 \\
\end{bmatrix}
\begin{bmatrix}
 u \\
 v \\
 w \\
\end{bmatrix}
=
\begin{bmatrix}
 x \\
 y \\
 z \\
\end{bmatrix}
\]

• How many unknowns?
• How many correspondences are needed?
Direct Linear Transform

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & 1
\end{bmatrix}
\begin{bmatrix}
u \\
v \\
w
\end{bmatrix}
=
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\]

• Set \(w = 1 \) and \(z = 1 \), then have

\[
\alpha
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & 1
\end{bmatrix}
\begin{bmatrix}
u \\
v \\
1
\end{bmatrix}
=
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

• Divide line 1 and 2 by 3
• Rearrange terms to form...
“Image Stitching”

• A colloquial term for the same thing...
\[\alpha(a_{11}u + a_{12}v + a_{13}) = x \]
\[\alpha(a_{21}u + a_{22}v + a_{23}) = y \]
\[\alpha(a_{31}u + a_{32}v + a_{33}) = 1 \]

Divide 1st and 2nd line by 3rd line:
\[(a_{11}u + a_{12}v + a_{13}) = x(a_{31}u + a_{32}v + a_{33}) \]
\[(a_{21}u + a_{22}v + a_{23}) = y(a_{31}u + a_{32}v + a_{33}) \]

Rearrange terms:
\[a_{11}u + a_{12}v + a_{13} - a_{31}xu - a_{32}yv - a_{33}x = 0 \]
\[a_{21}u + a_{22}v + a_{23} - a_{31}xu - a_{32}yv - a_{33}y = 0 \]
See blackboard...

\[a_{11}u + a_{12}v + a_{13} - a_{31}xu - a_{32}yv - a_{33}x = 0 \]
\[a_{21}u + a_{22}v + a_{23} - a_{31}xu - a_{32}yv - a_{33}y = 0 \]

Assume \(a_{33} = 1 \),

\[a_{11}u + a_{12}v + a_{13} - a_{31}xu - a_{32}yv = x \]
\[a_{21}u + a_{22}v + a_{23} - a_{31}xu - a_{32}yv = y \]

Setup for 4+ points, yields 8 equations for 8 unknowns...
• Solve Direct Linear Transform (DLT):

\[
\begin{pmatrix}
u_0 & v_0 & 1 & 0 & 0 & 0 & -u_0x_0 - v_0x_0 \\
u_1 & v_1 & 1 & 0 & 0 & 0 & -u_1x_1 - v_1x_1 \\
u_2 & v_2 & 1 & 0 & 0 & 0 & -u_2x_2 - v_2x_2 \\
u_3 & v_3 & 1 & 0 & 0 & 0 & -u_3x_3 - v_3x_3 \\
0 & 0 & 0 & u_0 & v_0 & 1 & -u_0y_0 - v_0y_0 \\
0 & 0 & 0 & u_1 & v_1 & 1 & -u_1y_1 - v_1y_1 \\
0 & 0 & 0 & u_2 & v_2 & 1 & -u_2y_2 - v_2y_2 \\
0 & 0 & 0 & u_3 & v_3 & 1 & -u_3y_3 - v_3y_3 \\
\end{pmatrix} = b
\]

where \(A \) is the vector of unknown coefficients \(a_{ij} \)
Topics

• Image morphing (2D)
• View morphing (2D+)
• Image warping (3D)
3D Image Warping

• Goal: “warp” the pixels of the image so that they appear in the correct place for a new viewpoint

• Advantage:
 – Don’t need a geometric model of the object/environment
 – Can be done in time proportional to screen size and (mostly) independent of object/environment complexity

• Disadvantage:
 – Limited resolution
 – Excessive warping reveals several visual artifacts (see examples)
3D Image Warping Equations

\[P = \begin{bmatrix} u_x & v_x & O_x \\ u_y & v_y & O_y \\ u_z & v_z & O_z \end{bmatrix} \]

\[\dot{X} = \dot{C} + t \cdot P \cdot \dot{x} \]

Some pictures courtesy of SIGGRAPH '99 course notes
(Leonard McMillan)
3D Image Warping Equations

\[\dot{C}_2 + t_2 P_2 \bar{x}_2 = \dot{C}_1 + t_1 P_1 \bar{x}_1 \]

\[t_2 P_2 \bar{x}_2 = \dot{C}_1 - \dot{C}_2 + t_1 P_1 \bar{x}_1 \]

\[t_2 \bar{x}_2 = P_2^{-1}(\dot{C}_1 - \dot{C}_2) + t_1 P_2^{-1} P_1 \bar{x}_1 \]

\[\frac{t_2}{t_1} \bar{x}_2 = \frac{1}{t_1} P_2^{-1}(\dot{C}_1 - \dot{C}_2) + P_2^{-1} P_1 \bar{x}_1 \]

\[\bar{x}_2 = \frac{1}{t_1} P_2^{-1}(\dot{C}_1 - \dot{C}_2) + \frac{P_2^{-1}}{t_2 \delta} P_1 \bar{x}_1 \]
McMillan & Bishop Warping Equation:
\[x_2 = \delta(x_1) P_2^{-1} (c_1 - c_2) + P_2^{-1} P_1 x_1 \]

- Per-pixel distance values are used to warp pixels to their correct location for the current eye position.
3D Image Warping Equations

- Images enhanced with per-pixel depth
 [McMillan95]
3D Image Warping Equations

\[
P = C_1 + (c_1 + u_1 a_1 + v_1 b_1)w_1
\]

\[
P = C_2 + (c_2 + u_2 a_2 + v_2 b_2)w_2
\]
3D Image Warping Equations

\[u_2 = \frac{w_{11} + w_{12} \cdot u_1 + w_{13} \cdot v_1 + w_{14} \cdot \delta(u_1, v_1)}{w_{31} + w_{32} \cdot u_1 + w_{33} \cdot v_1 + w_{34} \cdot \delta(u_1, v_1)} \]

\[v_2 = \frac{w_{21} + w_{22} \cdot u_1 + w_{23} \cdot v_1 + w_{24} \cdot \delta(u_1, v_1)}{w_{31} + w_{32} \cdot u_1 + w_{33} \cdot v_1 + w_{34} \cdot \delta(u_1, v_1)} \]
3D Image Warping Example
3D Image Warping Example

- DeltaSphere
 - Lars Nyland et al.
3D Image
Warping Example
3D Image Warping Example
3D Image
Warping Example
3D Image
Warping Example
Disocclusions

• Disocclusions (or exposure events) occur when unsampled surfaces become visible...

What can we do?
Disocclusion

• Bilinear patches: fill in the areas

What else?
The warping equation determines where points go...

... but that is not sufficient
Occlusion Compatible Rendering Order

- Epipolar geometry
- Project the new viewpoint onto the original image and divide the image into 1, 2 or 4 “sheets”
Occlusion Compatible Rendering Order

- A raster scan of each sheet produces a back-to-front ordering of warped pixels
Splatting

• One pixel in the source image does not necessarily project to one pixel in the destination image
 – e.g., if you are walking towards something, the sample might get larger...

• A solution: estimate shape and size of footprint of warped samples
 – expensive to do accurately
 – square/rectangular approximations can be done quickly (3x3 or 5x5 splats)
 – occlusion-compatible rendering will take care of oversized splats
 – **BUT large splats can make the image seem blocky/low-res**
More Examples Using the DeltaSphere

• Lars Nyland et al.

courtesy 3rd Tech Inc.
- 300° x 300° panorama
- this is the range light
spherical range panoramas

planar re-projection

Courtesy 3rd Tech Inc.
Complete Jeep model

Courtesy 3rd Tech Inc.
3D Modeling Can be Murder