Elements of Color Perception
Elements of Color

• Physics:
 – Illumination
 • Electromagnetic spectra; approx. 350 – 720 nm
 – Reflection
 • Material properties (i.e., reflectance, transparency)
 • Surface geometry and micro geometry (i.e., polished versus matte versus brushed)

• Perception
 – Physiology and neurophysiology
 – Perceptual psychology
Physiology of the Eye

- The eye:
 - The retina
 - 100 M Rods
 - B&W
 - 5 M Cones
 - Color
Physiology of the Retina

• The center of the retina is a densely packed region called the fovea.
 – Cones much denser here than the periphery
Types of Cones

• Three types of cones:
 – L or R, most sensitive to red light (610 nm)
 – M or G, most sensitive to green light (560 nm)
 – S or B, most sensitive to blue light (430 nm)

 – Color blindness results from missing cone type(s)
Color Blindness

Normal

Protan (L-cone) “red insensitivity”

Deutan (M-cone) “green insensitivity”

Tritan (S-cone) “B=G and Y=violet”
Mini Color Blindness Test

What do YOU see?
Both the normal and those with all sort of color vision deficiencies read it as 12.
The normal read this as 8.

Those with red-green deficiencies read this as 3.

Those with total color blindness cannot read any numeral.
The normal can read this as 5.

Those with red-green deficiencies can read this as 3.

Those with total color blindness cannot read any numeral.
The normal read this as 3.

Those with red-green deficiencies read this as 5.

Those with total color blindness cannot read any numeral.
The normal read this as 6.

The majority of those with color vision deficiencies can not read them or read them incorrectly.
The normal read this as 45.

The majority of those with color vision deficiencies can not read them or read them incorrectly.
The majority of the normal and those with total color blindness cannot read any numeral.

The majority of those with red-green deficiencies read this as 5.
Perception: Other Gotchas

• Color perception is also difficult because:
 – It varies from person to person (thus need “standard observers”)
 – It is affected by adaptation
 – It is affected by surrounding color
 – There is Mach-banding
Summary of Human Color Perception

• Subjectively, the human eye seems to perceive color by three conceptual dimensions:
 – hue,
 – brightness, and
 – saturation.

• This suggests a 3D color space.

• Hardware reproduction of color cannot match human perception perfectly.
Perception: Metamers

- A given perceptual sensation of color derives from the stimulus of all three cone types.
- **Identical** perceptions of color can be caused by very **different** spectra.
Simultaneous Contrast

• Is “A” looks darker than “B”?
Simultaneous Contrast

- Is “A” looks darker than “B”?
Simultaneous Contrast

• Is “A” looks darker than “B”?
• Nope! Why?

• What about in color?

http://www.sandlotscience.com/Guided_Tours/Tour1/Tour_5.htm
The upper and lower cubes in the foreground appear very different in brightness: white below and dark grey above. Despite this appearance, the surfaces are in fact physically identical. Move your mouse over the 'mask' to reveal their 'true' similarity.
Changing Contrast
Changing Contrast
Contrast Sensitivity Function
Contrast Sensitivity Function
Learned Expectation
Learned Expectation
Learned Expectation

THE PAOMNNEHAL PWEOR OF THE HMUAN MNID. Aoccdrnig to a rscheearch at Cmabrigde Uniervtisy, it deosn't mttær in waht oredr the ltteers in a wrod are, the olny iprmoatnt tihng is tah the frist and lsat ltteer be in the rghit pclae. The rset can be a taotl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.
Learned Expectation

• Starting the below left to right, top to bottom

red blue orange purple
orange blue green red
blue purple green red
orange blue red green
purple orange red blue
green red blue purple
orange blue red green
purple orange red blue

• Stroop Effect [1935]
Learned Expectation

These two tables appear to have very different dimensions. In fact, the length of the green table is identical to the width of the red table; and the length of the red table is the same as the width of the green table. Move your mouse over the 'mask' to reveal their 'true' similarity.
Ambiguity = Visual Confusion
Ambiguity = Visual Confusion
Stereo Depth Perception
Stereo Depth Perception

1. Place finger in between circle and eyes
2. Focus on finger
3. Focus on circle

[http://www.mediacollege.com/3d/depth-perception/test.html]
Stereo Depth Perception

1. Place finger in between circle and eyes
2. Focus on finger
3. Focus on circle

[http://www.mediacollege.com/3d/depth-perception/test.html]
Perception and Stereopsis
Sir Charles Wheatstone

• Circa 1840
Basic Stereopsis
Perception and Stereopsis
Examples

• Using Cornsweet Illusion to better stereopsis
 To improve gloss depiction
 http://resources.mpi-inf.mpg.de/HighlightMicrodisparity/paper.pdf

• To account for luminance as well
• Need anaglyph glasses (but not COVID friendly)
Luminance Disparity Interplay

• Need anaglyph glasses (but not COVID friendly)

Figure 2: Influence of spatial luminance patterns on depth perception (orange profiles) varies depending on the applied texture patterns. A perceived depth reduction (second and third stimuli). While the first stimulus leads to a strong depth impression for the fourth stimulus. The inserted plot shows the additional materials, we provide full-resolution stereo images.
Luminance Disparity Interplay

- Need anaglyph glasses (but not COVID friendly)

Figure 2: Influence of spatial luminance patterns on depth perception. The physical depth of all stimuli (orange profiles) varies depending on the applied texture patterns. High-frequency removal from the first stimulus results in a perceived depth reduction (second and third stimuli). While the third stimulus barely exhibits any perceived depth, the fourth stimulus leads to a strong depth impression. The insets present the strength of perceived depth for the additional materials, providing full-resolution stereo images of the stimuli.
Luminance Disparity Interplay

- Need anaglyph glasses (but not COVID friendly)

Figure 2: Influence of spatial luminance patterns on depth perception. The physical depth of all stimuli is equal, yet the perceived depth (orange profiles) varies depending on the applied texture patterns. High-frequency removal from the texture on the right/deeper patch leads to a perceived depth reduction (second and third stimuli). While the third stimulus barely exhibits any perceivable depth, just swapping textures leads to a strong depth impression for the fourth stimulus. The insets present the strength of perceived disparity, as predicted by our model. In the additional materials, we provide full-resolution stereo images of the stimuli.
Opponent Color Theory

- Humans encode colors by differences
- E.g R-G, and B-Y Differences
Artistic Color Space
Color Spaces

• Three types of cones suggests color is a 3D quantity. How to define 3D color space?
• Idea: shine given wavelength (λ) on a screen, and mix three other wavelengths (R,G,B) on same screen. Have user adjust intensity of RGB until colors are identical:

 • How closely does this correspond to a color CRT?
 • Problem:
 • sometimes need to “subtract” R to match λ
The CIE (Commission Internationale d’Eclairage) came up with three hypothetical lights X, Y, and Z with these spectra:

- Approximately: $X \sim R$
 $Y \sim G$
 $Z \sim B$

- Idea: any wavelength λ can be matched perceptually by *positive* combinations of X,Y,Z
CIE Color Space
CIE Color Space

- The *gamut* of all colors perceivable is thus a three-dimensional shape in X,Y,Z:

For simplicity, we often project to the 2D plane $X+Y+Z=1$, e.g.:

$$X = \frac{X}{X+Y+Z}$$
$$Y = \frac{Y}{X+Y+Z}$$
$$Z = 1 - X - Y$$
Device Color Gamuts

• X, Y, and Z are hypothetical light sources; no real device can produce the entire gamut of perceivable color

• Example: CRT monitor
Device Color Gamuts

- The RGB color cube sits within CIE color space something like:
Device Color Gamuts

• We can use the CIE chromaticity diagram to compare the gamuts of various devices:

• Note, for example, that a color printer cannot reproduce all shades available on a color monitor.
LAB Space

• A $L^*a^*b^*$ color space is a color-opponent space with dimension L^* for lightness and a^* and b^* for the color-opponent dimensions, based on nonlinearly compressed CIE XYZ color space coordinates.

\[
L^* = 116f(Y/Y_n) - 16 \\
a^* = 500[f(X/X_n) - f(Y/Y_n)] \\
b^* = 200[f(Y/Y_n) - f(Z/Z_n)]
\]

\[
f(t) = \begin{cases}
 t^{1/3} & \text{if } t > \left(\frac{6}{29}\right)^3 \\
 \frac{1}{3} \left(\frac{29}{6}\right)^2 t + \frac{4}{29} & \text{otherwise}
\end{cases}
\]
LAB Space

- L* a* b* color is designed to approximate human vision. It aspires to perceptual uniformity, and its L* component closely matches human perception of “lightness”, and a* and b* alters “color”.
 - In contrast, RGB, CMYK, and other spaces model the output of physical devices rather than human visual perception
LAB Space Perceptually Fun Facts:

\(a^* \) axis

- \(a^* \) axis corresponds to “blue yellow” range which approximates black body radiation
LAB Space Perceptually Fun Facts:

a* axis

- a* axis corresponds to “blue yellow” range which approximates black body radiation
- We *seem* to be less sensitive to changes along that axis – maybe because “its everywhere”
LAB Space Perceptually Fun Facts: Color Constancy

• Color constancy is an example of subjective constancy
• It states that the perceived color of objects remains relatively constant under varying illumination conditions.
 – e.g., A green apple looks green to us at noon (white sunlight) or at sunset (red sunlight)
LAB Space Perceptually Fun Facts: Examples

• In both pictures, we can recognize the same colors, why?
LAB Space Perceptually Fun Facts: Examples

• In both pictures, we can recognize the same colors, why?
Color Constancy

- Given two colors, we compute
 \[\frac{C_1}{C_2} = R_{12} \]

- Now change the colors but keep the ratio, so
 \[\frac{C'_1}{C'_2} = R_{12} \]

- The colors will seem relatively the same (or “constant”)

Perceptually Significant Color Differences

• In LAB, one unit means a perceptually significant color/luminosity difference

• This is not the case in, for example, RGB

• Check out:
 http://colormine.org/delta-e-calculator/

Example use in current research...
RGB Color Space
RGB Color Space

• Convenient colors (screen phosphors)
• Decent coverage of the human color
• Customarily quantized in the range 0...255
• Full color = 3 bytes/pixel
• Not a particularly good basis for human interaction
 – Non-intuitive
 – Non-orthogonal (perceptually)
RGB Color Space

- The RGB colors can be arranged in a cube, in a space with the dimensions R, G, and B. The colors at the vertices of the RGB cube are then:

<table>
<thead>
<tr>
<th>Color</th>
<th>R</th>
<th>G</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>black</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>white</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>red</td>
<td>255</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>green</td>
<td>0</td>
<td>255</td>
<td>0</td>
</tr>
<tr>
<td>blue</td>
<td>0</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>cyan</td>
<td>0</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>magenta</td>
<td>255</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>yellow</td>
<td>255</td>
<td>255</td>
<td>0</td>
</tr>
</tbody>
</table>
RGB Cube Properties

• The main diagonal from black to white contains the gray scale.
• If a specific color is given as (R,G,B) and k is a number smaller than 1, then (kR, kG, kB) has approximately the same hue and is dimmer. So, we can model color intensity by
 – (kR, kG, kB), k < 1
 – Note that the brightness of (R,G,B) is not exceeded
Converting Within Some RGB Color Spaces

• Sometimes only a simple matrix operation is needed:

\[
\begin{bmatrix}
R' \\
G' \\
B'
\end{bmatrix} =
\begin{bmatrix}
X_R & X_G & X_B \\
Y_R & Y_G & Y_B \\
Z_R & Z_G & Z_B
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

• The transformation \(\mathbf{C}_2 = \mathbf{M}^{-1}_2 \mathbf{M}_1 \mathbf{C}_1 \) yields RGB on monitor 2 that is equivalent to a given RGB on monitor 1

• Analogous to change of coordinate system.
sRGB

- Standard RGB space of a “RGB device” assuming a gamma correction of 2.2
 - (gamma correction to be explained in a few slides)

\[
\begin{bmatrix}
R_{\text{linear}} \\
G_{\text{linear}} \\
B_{\text{linear}}
\end{bmatrix} =
\begin{bmatrix}
3.2406 & -1.5372 & -0.4986 \\
-0.9689 & 1.8758 & 0.0415 \\
0.0557 & -0.2040 & 1.0570
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}
\]

\[C_{\text{srcbg}} = \begin{cases}
12.92C_{\text{linear}}, & C_{\text{linear}} \leq 0.0031308 \\
(1 + a)C_{\text{linear}}^{1/2.4} - a, & C_{\text{linear}} > 0.0031308
\end{cases}\]

where C corresponds to any of R, G or B; and a = 0.055
sRGB
LAB and sRGB

• “ab” slices of LAB space that fall within the sRGB gamut of a typical display
 – sRGB = “standard RGB gamut”
HSV/HSL Color Space

• Intensity/Value
 – total amount of energy

• Saturation
 – degree to which color is one wavelength

• Hue
 – dominant wavelength
HSV

- Max = max(R, G, B)
- Min = min(R, G, B)
- S = (max – min)/max
- If R==Max → h = (G-B)/(max-min)
- If G==Max → h = 2+(B-R)/(max-min)
- If B==Max → h = 4 + (R-G)/(max-min)
- If h<0 → H = h/6 + 1
- If h>0 → H = h/6
HSV User Interaction
HSL

\[S = \sqrt{\frac{(R - G)^2 + (R - B)^2 + (G - B)^2}{2}} \]

\[I = \frac{R + G + B}{3} \]

\[H = a - \arctan \left(\frac{(R-1)b}{G-B} \right) \times \frac{2\pi}{2\pi} \]

\[a = \begin{cases} \frac{\pi}{2} & \text{if } G > B, \\ \frac{3\pi}{2} & \text{if } G < B \end{cases} \]

\[H = 1 \quad \text{if } G = B \]

\[a = \sqrt{3} \]
YIQ Color Space

- **YIQ** is the color model used for color TV in the US
 - \(Y \) is luminance; \(I \) & \(Q \) are color
 - Note: \(Y \) is the same as CIE’s \(Y \)
 - Result: backwards compatibility with B/W TV!
Converting Between RGB and YIQ

- Converting between color models can also be expressed as such a matrix transform, e.g.:

\[
\begin{bmatrix}
Y \\
I \\
Q
\end{bmatrix} = \begin{bmatrix}
0.30 & 0.59 & 0.11 \\
0.60 & -0.28 & -0.32 \\
0.21 & -0.52 & 0.31
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]
Gamma Correction

- We generally assume color brightness is linear
- But most display devices are inherently nonlinear
 - brightness(voltage) ≠ 2×brightness(voltage/2): \(I = V_s^\gamma \)
- Common solution: *gamma correction*
 - Post-transformation on RGB values to map them to linear range on display device:
 \[V_c = V_s^{1/\gamma} \]
 - Can have separate \(\gamma \) for R, G, B
 - \(\gamma \) is usually in range 1.8 to 2.2
Gamma Correction

\[
\begin{array}{c}
\gamma = 0.5 \\
\gamma = 1 \text{ (original)} \\
\gamma = 2 \\
\gamma = 3 \\
\gamma = 4
\end{array}
\]

Linear encoding \(V_S = \)

\[
0.0 \ 0.1 \ 0.2 \ 0.3 \ 0.4 \ 0.5 \ 0.6 \ 0.7 \ 0.8 \ 0.9 \ 1.0
\]

Linear intensity \(I = \)

\[
0.0 \ 0.1 \ 0.2 \ 0.3 \ 0.4 \ 0.5 \ 0.6 \ 0.7 \ 0.8 \ 0.9 \ 1.0
\]
<table>
<thead>
<tr>
<th>3.0</th>
<th>2.8</th>
<th>2.6</th>
<th>2.4</th>
<th>2.2</th>
<th>2.0</th>
<th>1.8</th>
<th>1.6</th>
<th>1.4</th>
<th>1.2</th>
<th>1.0</th>
<th>0.8</th>
<th>0.6</th>
</tr>
</thead>
</table>
Gamma Correction

\[\gamma = 1.0 \]

- Camera (gamma encoding)
- Display (gamma expansion)
- Overall
Gamma Correction

\[\gamma = 1/2.2 \]

- Camera (gamma encoding)
- Display (gamma expansion)
- Overall
Examples

• Demo apps
• Website:
 – http://www.webexhibits.org/colorart/contrast.html
Supercool!

• [Video]