Spatial Data Structures and Hierarchies

CS334 Fall 2017

Daniel G. Aliaga
Department of Computer Science
Purdue University
Spatial Data Structures

- Store geometric information
- Organize geometric information
- Permit fast access to/of geometric information
- Applications
 - Heightfields
 - Collision detection (core to *many* uses)
 - Simulations (e.g., surgery, games)
 - Rendering (e.g., need to render fast!)
Hierarchical Modeling

• Concept is old but fundamental
 – “Hierarchical geometric models for visible surface algorithms”, James Clark - 1976
Hierarchical Modeling

• Trees and Scene Graphs
Hierarchical Modeling

- Trees and Scene Graphs
Hierarchical Modeling

- Trees and Scene Graphs
Bounding Volumes

• Problem:
 – Suppose you need to intersect rays with a scene...
 – Suppose you have a scene divided into objects...

• Solution: bottom-up
 – Wrap complex objects into simple ones
 • Boxes, spheres, other shapes...
 – Organize into a tree
Bounding Sphere

- Simplest way to bound an object
- Good for small or round objects
Bounding Boxes

- Axis Aligned Vs Orientated

Orientated
More Expensive

Axis Aligned
Cheaper
Bounding Volume Hierarchy (BVH)

- How to building an axis aligned bounding box (AABB) BVH?
- How to intersect?
- Complexity? Problem cases?
AABB BVH

• Example construction
 – Given M 2D points, use k-means clustering to determine clusters
 – Then group nearby clusters (e.g., use Voronoi diagram or Delaunay triangulation)
 – And iteratively form a tree from the bottom-up
 – In each node, approximate the contained points using an axis-aligned bounding box
 • e.g., box = [min of all contained pts, max of all contained pts]
Bounding Volume Hierarchy (BVH)

• How to building an oriented bounding box (OBB) BVH?
• How to intersect?
• Complexity? Problem cases? Advantages over axis-aligned?
OBB BVH

• Example construction
 – Similar to AABB BVH but “fit” an oriented box to the points within each cluster/node of the tree
 – Methods:
 • Sample possible rotations and sizes in order to pick the best box
 • Compute distance of points to a line and optimize the line equation parameters until finding the line that best approximates all points
 • Then compute a box width – consider the benefit/cost of the box size
 – e.g., totally containing all points might make the box very large; could also choose to mostly contain the points – however, what does this mean with regards to operations using the BVH?
An Application of BVH: Collision Detection

• Turn complex objects into bounded volumes for collision testing
• Fast, but not reliable
• Great initial test, but should be followed by another more precise test
An Application of BVH: Collision Detection

• Intersect these!
Bounding Volume Hierarchy

- Enclose objects into BVs
- Check BV first
Bounding Volume Hierarchy

- Enclose objects into BVs
- Check BV first
- Decompose into two
Bounding Volume Hierarchy

• Enclose objects into BVs
• Check BV first
• Decompose into two
• Proceed hierarchically
Bounding Volume Hierarchy

• Enclose objects into BVs
• Check BV first
• Decompose into two
• Proceed hierarchically
Bounding Volume Hierarchy

- BVH is pre-computed for each object
Bounding Volume Hierarchy in 3D
Collision Detection

Two objects described by their precomputed BVHs
Collision Detection

Search tree

A

pruning

A

A
Collision Detection

Search tree
Collision Detection

Search tree

pruning
Collision Detection

Search tree

If the pieces contained in G and D overlap \rightarrow collision
AABB

- Not invariant
- Efficient to test
- Not tight
- Invariant
- Less efficient to test
- Tight
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Sphere</th>
<th>AABB</th>
<th>OBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tightness</td>
<td>-</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>Testing</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Invariance</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

No type of BV is optimal for all situations
Space Subdivision

- Binary tree / Quadtree / Octree
- k-D tree
- Binary Space Partitioning (BSP) Tree
Binary Tree

- A directed edge refers to the link from the parent to the child (the arrows in the picture of the tree).
- The root node of a tree is the node with no parents; there is at most one root node in a rooted tree.
- A leaf is a node that has no children.
- The depth of a node is the length of the path from the root to the node. The root node is at depth zero.
- The height of a tree is the depth of its furthest leaf. A tree with only a root node has a height of zero.
- Siblings are nodes that share the same parent node.

Size = 9
Height = 3
Root node = 2
Binary Tree

- Operations
 - Search
 - Insert
 - Delete
• Similar to binary-tree, but have 4 children per node

• Each node corresponds to one of four rectangular regions of the current quad
Quadtree

• Similar to binary-tree, but have 4 children per node
• Each node corresponds to one of four rectangular regions of the current quad
• Point quadtree
 – Partitions depend on the data
 – The quad is divided using the previous point within it
Quadtree

• Point quadtree
 – Partitions depend on the data
 – The quad is divided using the previous point within it

• Advantage
 – Data dependent subdivision reduces (unnecessary) number of quads

• Disadvantage
 – Quads do not tightly approximate region surrounding the point
Quadtree

• Matrix (MX) quadtree
 – Location of partition lines independent of the data
 – The occupied nodes are all subdivided until a tight fitting box
Quadtree

• MX quadtree
 – Location of partition lines independent of the data
 – The occupied nodes are all subdivided until a tight fitting box

• Advantage
 – Quads leaf nodes always tightly approximate region surrounding the point

• Disadvantage
 – Potentially lots of levels from root to a point
Quadtree

- Point Region (PR) quadtree
 - Location of partition lines independent of the data
 - The nodes are all subdivided until p or less points per node (e.g., $p=1$)
• PR quadtree
 – Location of partition lines independent of the data
 – The nodes are all subdivided until p or less points per node (e.g., $p=1$)

• Advantage
 – Partition lines are known and paths from root to point is only as long as needs to be

• Disadvantage
 – Quads do not tightly approximate region surrounding the point
Quadtree

• Comparison

Point QT

MX QT

PR QT
Demo

• http://donar.umiacs.umd.edu/quadtree/
Octree

- Analogous to Quadtree but extended to 3D
- Each node is divided into eight subboxes
Octree

- Analogous to Quadtree but extended to 3D
- Each node is divided into eight subboxes
- Similar, there are
 - Point octrees
 - MX octrees
 - PR octrees
K-D tree

- Partition each dimension in a cyclical fashion
 - Thus, can be applied to 2D, 3D, or higher dimensions
- Each node stores a next partitioned “half-space” of data points (or of the data space)
k-D tree

- The first split (red) cuts the root cell (white) into two
- Each of which is then split (green) into two subcells
- Each of those four is split (blue) into two subcells
- The final eight called leaf cells
- The yellow spheres represent the tree vertices

A 3-dimensional kd-tree

The resulting kd-tree decomposition

The resulting kd-tree
Demo

- http://donar.umiacs.umd.edu/quadtree/
Binary Space Partitioning (BSP)

- Similar to k-D tree but splitting lines/planes are not necessarily axis-aligned
- Can adapt better to data
- Was algorithm used for visibility sorting...
Binary Space Partitioning (BSP)

• Suitable for any number of dimensions

Separating planes are shown in black and objects in blue.

BSP trees
Demo

• More stuff at

• See