Select the correct option for the following multiple choice questions or provide short answers accordingly:

1. Consider a hash table with chaining, of size N. Assume in each of the following scenarios the table starts empty. Further assume K pairs of <key, element> are added and K = N. Then, in which of the following situations will a find operation for a particular key have a potential worst-case runtime of O(N).
 a) The keys of all elements are powers of two and the hash function returns a unique index for each key mod N.
 b) The hash function returns a fixed number mod N, but the keys of all elements inserted are unique.
 c) Although the hashing function computes a good distribution of key values into the hash table indices, the hash function returns only even numbers.
 d) The find operation in this problem is never near O(N).

 Ans: b (Hash function results into a single chain whose length is proportional to size of the input)

2. You have a hash table of size N = 65. You have total 10,000 elements to insert into the table (e.g., N << 10,000). The keys are all unique and are all 64 bit positive integers. You have to find a suitable hash function h(k) for key ‘k’. Which of the following hash functions will NOT work with the given parameters?
 a) h(k) = k mod N
 b) h(k) = (number of bits of k which are ‘1’) mod N
 c) h(k) = \lfloor \log_2 (k) \rfloor
 d) h(k) = \lfloor \log_2 (k^2) \rfloor

 Ans: (d). The range of the function h(k) should be {0, 1, ..., 64}, since N=65. But for k > 2^n, h(k) > 66.
3. Consider the same setting as above. The only change is, now the keys are all ASCII strings of length 32, instead of integers. Which of the following hash function will NOT work?

 a) \(h(k) = (\text{sum of the ASCII values of all the characters}) \mod N \)
 b) \(h(k) = (\Sigma_{i=0}^{31} k[i] \times 128^i) \mod N \), where 0 ≤ i ≤ 31, and k[i] represent the i\text{th} character in string k.
 c) \(h(k) = (\text{ASCII value of } k[i]) / 4 \), where ‘i’ is randomly chosen, 0 ≤ i ≤ 31, k[i] represent the i\text{th} character in string k, and ASCII values are in the range [0, 255].
 d) All the hash functions defined above will not work (in this problem).
 e) All the hash functions defined above will work (in this problem).

 Ans: (c). for any specific value of k, h(k) should always return the same value. But, since ‘i’ is randomly chosen h(k) can return different values for the same value of k.

4. You are given a hash table which allows collision. Each slot of the hash table actually keeps a linked list, and whenever a collision occurs the new element is added to the tail of the list. Suppose, you have total M elements, and the hash table is of size N. Let’s assume the hash function generates hash values i=h(k) which look almost random. What is the expected running time (not the worst-case running time) for a search operation?

 a) \(O(\log M) \)
 b) \(O(\log N) \)
 c) \(O(M/N) \)
 d) \(O(1) \)

 Ans: (c). Calculating h(k) takes \(O(1) \). Searching the linked list takes \(O(n) \), where n is the length of the linked list. In expected case, \(n = M/N \), since h() generates hash values which looks almost random.

5. Explain in one sentence why each of the following is a property of a good hash function:

 a) Fast to compute
 b) Rarely causes collisions
 c) The same keys hash to the same value

 Ans:
 a) Hash function should be fast to get results in \(O(1) \) constant time so that they don’t end up becoming the bottleneck
 b) Few collisions means less clustering at/around the same index which leads to faster search and insert operations in hash table
 c) The same keys should hash to same value, so that the key look up is deterministic
6. Assume that you have an array of Strings representing words from the English language. The length of the array is N. You are tasked with finding the word with the maximum and minimum frequency. Describe an algorithm where this can be done in O(N) using a hash table.

Ans: The array can be scanned to count the frequencies of the words, and then can the hash table can be iterated once to get the word with max and min frequency.

7. Assume that you have an array of unique integers. The length of the array is N. You are tasked with finding two integers in this array such that their sum is equal to a provided target integer. Describe an algorithm where this can be done in O(N) using a hash table. You can assume that exactly one pair of elements in the array sums to the provided target integer.

Ans: Iterate through the array and store each element in the hash table. Now, iterate through the array again and check if the “target-current” exists in the hashtable. If it does, then output these two elements and terminate. These two iterations can be combined into one pass as well.

8. The maximum number of nodes that can be present in a binary tree with depth n (Assume root is at depth 0) are:

NOTE: You need to provide the proof of your result (i.e., you need to derive the result).

Ans: \(2^{(n+1)}-1\). (proof by induction or by using the formula for geometric series)

9. You have N elements equally distributed in K lists sorted in ascending order. Further the K lists are initially sorted in ascending order as well (based on the minimum element present at the start of each list). However, there is no guarantee of the relative values of the elements in the K lists below the current top of each list. Assuming no extra data structure is built:
 a) What is the tightest big-oh notation for removing the smallest element?
 Ans : O(1)
 b) What is the tightest big-oh notation for re-sorting the K lists once the smallest element of one of the lists is removed?
 Ans: O(klogk) or O(k). : Using comparison based sorting, for k elements (elements present at the start of each list), we need O(klogk) comparisons.
 c) What is tightest big-oh notation for removing all N elements? O(Nklogk) or O(Nk) (it’s the time to compute part (a) and (b) successively for N elements)
10. How many comparisons are needed by insertion sort to sort an array of 100 integers in the best possible case.
 NOTE: Provide appropriate justification on when you might be able to see the best case.
 a) 100
 b) 4950
 c) 99
 d) 98
 Ans: c (n-1 comparisons)

11. You run BubbleSort on a list of 10,000 items that are listed in reverse order. How many swaps will happen when running this program?
 a) 49,995,000
 b) 50,000,000
 c) 50,005,000
 d) 100,000,000

 Ans: a
 The first item is swapped 9,999 times. The second 9,998 times. Continue until the last two items are swapped once and not at all. Adding this is the sum of the numbers between 1 and 9999. Calculate this as an arithmetic progression to get \((9999*10,000)/2 = 49,995,000\).

12. Suppose that you have a pre-sorted linked list of size N, and you want to insert a new item into the structure in a way that keeps the list in order. What is the runtime of this operation?
 a) O(logN)
 b) O(N)
 c) O(1)
 d) O(NlogN)

 Ans: (b) (Need to traverse n-1 links in the worst case)