Sorting Lower Bound
Many sorting algorithms are comparison based
- They sort by making comparisons between pairs of objects
- Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...

Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, x_1, x_2, \ldots, x_n
Counting Comparisons

Let us just count comparisons then.

Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree.
Decision Tree Height

- Height of this decision tree is a lower bound on the running time
- Every possible input permutation leads to a separate leaf output
 - If not, some input \ldots 4\ldots 5\ldots would have same output ordering as \ldots 5\ldots 4\ldots, which would be wrong.

- How many leaves are there?
 - There are \(n! = 1 \times 2 \times \cdots \times n \) leaves

- What is the height of the tree?
 - The height is at least \(\log(n!) \)
Decision Tree Height

- Height of this decision tree is a lower bound on the running time.
- Every possible input permutation leads to a separate leaf output.
 - If not, some input ...4...5... would have same output ordering as ...5...4..., which would be wrong.
- How many leaves are there?
 - There are n! = 1*2*...*n leaves.
- What is the height of the tree?
 - The height is at least \(\log(n!) \).
The Lower Bound

Any comparison-based sorting algorithms takes at least \(\log (n!) \) time.

Therefore, any such algorithm takes time at least

\[
\log (n!) \geq \log \left(\frac{n}{2} \right)^{\frac{n}{2}} = \left(\frac{n}{2} \right) \log \left(\frac{n}{2} \right).
\]

- Why?
- (because there are at least \(\frac{n}{2} \) terms greater than \(\frac{n}{2} \))

That is, any comparison-based sorting algorithm must run in \(\Omega(n \log n) \) time.
Is there a way to break the $O(n \log n)$ barrier?

Yes!

- Don’t use comparisons
 - That is, a non-comparison based sort