Regular Expressions
and
Finite State Automata

With thanks to Steve Rowe at CNLP
Introduction

• Regular expressions are equivalent to Finite State Automata in recognizing regular languages, the first step in the Chomsky hierarchy of formal languages
• The term regular expressions is also used to mean the extended set of string matching expressions used in many modern languages
 – Some people use the term regexp to distinguish this use
• Some parts of regexps are just syntactic extensions of regular expressions and can be implemented as a regular expression – other parts are significant extensions of the power of the language and are not equivalent to finite automata
Concepts and Notations

- **Set**: An unordered collection of unique elements

 \[S_1 = \{ a, b, c \} \quad S_2 = \{ 0, 1, \ldots, 19 \} \quad \text{empty set: } \emptyset \]

 - membership: \(x \in S \)
 - union: \(S_1 \cup S_2 = \{ a, b, c, 0, 1, \ldots, 19 \} \)
 - universe of discourse: \(U \)
 - subset: \(S_1 \subseteq U \)
 - complement: if \(U = \{ a, b, \ldots, z \} \), then \(S_1^\prime = \{ d, e, \ldots, z \} = U - S_1 \)

- **Alphabet**: A finite set of symbols

 - Examples:
 - \(\Sigma_1 = \{ a, b \} \quad \Sigma_2 = \{ \text{Spring}, \text{Summer}, \text{Autumn}, \text{Winter} \} \)

- **String**: A sequence of zero or more symbols from an alphabet

 - The empty string: \(\varepsilon \)
Concepts and Notations

- **Language**: A set of strings over an alphabet
 - Also known as a *formal language*; may not bear any resemblance to a *natural language*, but could model a subset of one.
 - The language comprising **all** strings over an alphabet \(\Sigma \) is written as: \(\Sigma^* \)

- **Graph**: A set of nodes (or vertices), some or all of which may be connected by edges.
 - An example:
 - A *directed graph* example:
Regular Expressions

- A regular expression defines a regular language over an alphabet Σ:
 - \emptyset is a regular language: //
 - Any symbol from Σ is a regular language:
 $$\Sigma = \{ \text{a, b, c} \} \quad /\text{a}/ \quad /\text{b}/ \quad /\text{c}/$$
 - Two concatenated regular languages is a regular language:
 $$\Sigma = \{ \text{a, b, c} \} \quad /\text{ab}/ \quad /\text{bc}/ \quad /\text{ca}/$$
Regular Expressions

- **Regular language** (continued):
 - The **union** (or **disjunction**) of two regular languages is a regular language:
 \[
 \Sigma = \{ a, b, c \} / ab | bc / / ca | bb /
 \]
 - The **Kleene closure** (denoted by the **Kleene star**: \(* \)) of a regular language is a regular language:
 \[
 \Sigma = \{ a, b, c \} / a^* / / (ab | ca)^*
 \]
 - Parentheses group a sub-language to override operator precedence (and, we’ll see later, for “memory”).
Finite Automata

• Finite State Automaton
 a.k.a. Finite Automaton, Finite State Machine, FSA or FSM
 – An abstract machine which can be used to implement regular expressions (etc.).
 – Has a finite number of states, and a finite amount of memory (i.e., the current state).
 – Can be represented by directed graphs or transition tables
Finite-state Automata (1/23)

• Representation
 – An FSA may be represented as a directed graph; each node (or vertex) represents a state, and the edges (or arcs) connecting the nodes represent transitions.
 – Each state is labelled.
 – Each transition is labelled with a symbol from the alphabet over which the regular language represented by the FSA is defined, or with ε, the empty string.
 – Among the FSA’s states, there is a start state and at least one final state (or accepting state).
Finite-state Automata (2/23)

- **Representation** (continued)
 - An FSA may also be represented with a **state-transition table**.

 The table for the above FSA:

<table>
<thead>
<tr>
<th>State</th>
<th>Input</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Ø</td>
</tr>
<tr>
<td>1</td>
<td>Ø</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Ø</td>
</tr>
<tr>
<td>4</td>
<td>Ø</td>
<td>Ø</td>
</tr>
</tbody>
</table>
• Given an input string, an FSA will either accept or reject the input.
 – If the FSA is in a final (or accepting) state after all input symbols have been consumed, then the string is accepted (or recognized).
 – Otherwise (including the case in which an input symbol cannot be consumed), the string is rejected.
Finite-state Automata (3/23)

\[\Sigma = \{ a, b, c \} \]

\[q_0 \quad a \quad q_1 \quad b \quad q_2 \quad c \quad q_3 \quad a \quad q_4 \]

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>1</td>
<td>(\emptyset)</td>
<td>2</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>2</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>4</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IS_1:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IS_2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IS_3:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>c</td>
</tr>
</tbody>
</table>
Finite-state Automata

\[\Sigma = \{ \text{a, b, c} \} \]

Input State Table

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>2</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>4</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

IS_1:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
</tr>
</thead>
</table>

IS_2:

<table>
<thead>
<tr>
<th>c</th>
<th>c</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
</table>

IS_3:

| a | b | c | a | c |
Finite-state Automata

\[\Sigma = \{ a, b, c \} \]

\[\begin{array}{c|ccc}
\text{State} & a & b & c \\
0 & 1 & \emptyset & \emptyset \\
1 & \emptyset & 2 & \emptyset \\
2 & \emptyset & \emptyset & 3 \\
3 & 4 & \emptyset & \emptyset \\
4 & \emptyset & \emptyset & \emptyset \\
\end{array} \]

\text{Input:}

**IS}_1: \quad \begin{array}{cccc}
a & b & c & a \\
\end{array}

**IS}_2: \quad \begin{array}{cccc}
c & c & b & a \\
\end{array}

**IS}_3: \quad \begin{array}{cccc}
a & b & c & a & c \\
\end{array}
Finite-state Automata (6/23)

\[\Sigma = \{ a, b, c \} \]

Input State	a	b	c
0 | 1 | Ø | Ø
1 | Ø | 2 | Ø
2 | Ø | Ø | 3
3 | 4 | Ø | Ø
4 | Ø | Ø | Ø
Finite-state Automata (7/23)

$$\Sigma = \{ \text{a, b, c} \}$$

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>1</td>
<td>Ø</td>
<td>2</td>
<td>Ø</td>
</tr>
<tr>
<td>2</td>
<td>Ø</td>
<td>Ø</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>4</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
</tbody>
</table>

Input

- IS$_1$: a b c a
- IS$_2$: c c b a
- IS$_3$: a b c a c
Finite-state Automata

\[\Sigma = \{ a, b, c \} \]

Input State Table

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>1</td>
<td>Ø</td>
<td>2</td>
<td>Ø</td>
</tr>
<tr>
<td>2</td>
<td>Ø</td>
<td>Ø</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>4</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
</tbody>
</table>

State Transition Diagram

- IS\(_1\): a, b, c, a
- IS\(_2\): c, c, b, a
- IS\(_3\): a, b, c, a, c
Finite-state Automata

\[\Sigma = \{ \text{a, b, c} \} \]

Input State

\begin{array}{c|ccc}
\text{State} & \text{a} & \text{b} & \text{c} \\
0 & 1 & \emptyset & \emptyset \\
1 & \emptyset & 2 & \emptyset \\
2 & \emptyset & \emptyset & 3 \\
3 & 4 & \emptyset & \emptyset \\
4 & \emptyset & \emptyset & \emptyset \\
\end{array}
Finite-state Automata

\[\Sigma = \{ \text{a, b, c} \} \]

\[IS_1: \quad \begin{array}{ccc} a & b & c \end{array} \]

\[IS_2: \quad \begin{array}{ccc} c & c & b \end{array} \]

\[IS_3: \quad \begin{array}{cccc} a & b & c & a & c \end{array} \]

<table>
<thead>
<tr>
<th>State</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>∅</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>∅</td>
</tr>
</tbody>
</table>
Finite-state Automata (11/23)

$$\Sigma = \{ \text{a, b, c} \}$$

State Transition Diagram:

- **q₀** → **a** → **q₁** → **b** → **q₂** → **c** → **q₃** → **a** → **q₄**

Input Table:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>2</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>4</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

Initial States (IS):

- **IS₁:** a b c a
- **IS₂:** c c b a
- **IS₃:** a b c a c
Finite-state Automata

\[\Sigma = \{ a, b, c \} \]

Transition Table:

<table>
<thead>
<tr>
<th>State</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>\emptyset</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

Graphical Representation:

- States: \(q_0, q_1, q_2, q_3, q_4 \)
- Transitions: \(q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \)
Finite-state Automata

\(\Sigma = \{ a, b, c \} \)

\[
\begin{array}{c}
\text{State} & \text{Input} \\
0 & \begin{array}{ccc}
1 & \emptyset & \emptyset \\
2 & \emptyset & \emptyset & 3 \\
3 & 4 & \emptyset & \emptyset \\
4 & \emptyset & \emptyset & \emptyset \\
\end{array}
\end{array}
\]

IS

IS_1: a b c a

IS_2: c c b a

IS_3: a b c a c
Finite-state Automata

\[\Sigma = \{ a, b, c \} \]

Input States

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>2</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>4</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

IS\(_1\):

\[
\begin{array}{cccc}
q_0 & a & b & c \\
q_1 & b & c & a \\
q_2 & c & b & a \\
q_3 & c & a & c \\
q_4 & a & b & c \\
\end{array}
\]

IS\(_2\):

\[
\begin{array}{cccc}
q_0 & a & b & c \\
q_1 & b & c & a \\
q_2 & c & b & a \\
q_3 & c & a & c \\
q_4 & a & b & c \\
\end{array}
\]

IS\(_3\):

\[
\begin{array}{cccc}
q_0 & a & b & c \\
q_1 & b & c & a \\
q_2 & c & b & a \\
q_3 & c & a & c \\
q_4 & a & b & c \\
\end{array}
\]
Finite-state Automata

- An FSA defines a **regular language** over an alphabet Σ:
 - \emptyset is a regular language: $\longrightarrow q_0$
 - Any symbol from Σ is a regular language:
 $\Sigma = \{ a, b, c \}$
 $\longrightarrow q_0 \quad b \quad q_1$
 - Two concatenated regular languages is a regular language:
 $\Sigma = \{ a, b, c \}$
 $\longrightarrow q_0 \quad b \quad q_1 \quad c \quad q_1$
 $\longrightarrow q_0 \quad b \quad q_1 \quad c \quad q_2$
Finite-state Automata (23/23)

• **regular language** (continued):
 – The union (or disjunction) of two regular languages is a regular language:

 \[\Sigma = \{ \text{a, b, c} \} \]

 – The **Kleene closure** (denoted by the **Kleene star**: \(\ast \)) of a regular language is a regular language:

 \[\Sigma = \{ \text{a, b, c} \} \]
Finite-state Automata

• Determinism
 – An FSA may be either deterministic (DFSA or DFA) or non-deterministic (NFSA or NFA).
 • An FSA is deterministic if its behavior during recognition is fully determined by the state it is in and the symbol to be consumed.
 – I.e., given an input string, only one path may be taken through the FSA.
 • Conversely, an FSA is non-deterministic if, given an input string, more than one path may be taken through the FSA.
 – One type of non-determinism is ε-transitions, i.e. transitions which consume the empty string (no symbols).
Finite-state Automata

- An example NFA:

\[\Sigma = \{ a, b, c \} \]

- The above NFA is equivalent to the regular expression \(/ab^*ca?/ \).
Finite-state Automata

• String recognition with an NFA:
 – **Backup** (or **backtracking**): remember choice points and revisit choices upon failure
 – **Look-ahead**: choose path based on foreknowledge about the input string and available paths
 – **Parallelism**: examine all choices simultaneously
Finite-state Automata (18/23)

• Recognition as search
 – Recognition can be viewed as selection of the correct path from all possible paths through an NFA (this set of paths is called the state-space)
 – Search strategy can affect efficiency: in what order should the paths be searched?
 • Depth-first (LIFO [last in, first out]; stack)
 • Breadth-first (FIFO [first in, first out]; queue)
 • Depth-first uses memory more efficiently, but may enter into an infinite loop under some circumstances
RegExps

– The extended use of regular expressions is in many modern languages:
 • Perl, php, Java, python, …
– Can use regexps to specify the rules for any set of possible strings you want to match
 • Sentences, e-mail addresses, ads, dialogs, etc
– “Does this string match the pattern?”, or “Is there a match for the pattern anywhere in this string?”
– Can also define operations to do something with the matched string, such as extract the text or substitute for it
– Regular expression patterns are compiled into a executable code within the language
Regular Expressions

- **Regexp** syntax is a superset of the notation required to express a regular language.

 - Some examples and shortcuts:
 1. `/[abc]/ = /a|b|c/`
 Character class; disjunction
 2. `(/[b-e]/ = /b|c|d|e/`
 Range in a character class
 3. `/[\012\015]/ = /\n|\r/`
 Octal characters; special escapes
 4. `/>. = /[@x00-\xFF]/`
 Wildcard; hexadecimal characters
 5. `/[\^b-e]/ = /[@x00-af-\xFF]/`
 Complement of character class
 6. `/.*/ = /[af]*/ (abc)*/`
 Kleene star: zero or more
 7. `/.a?/ = /a|/ (ab|ca)?/`
 Zero or one
 8. `/.a+/ = ([a-zA-Z]1|ca)="/`
 Kleene plus: one or more
 9. `/.a{8}/ = /b{1,2}/ /c{3,}/`
 Counters: exact repeat quantification
Regular Expressions

• Anchors
 – Constrain the position(s) at which a pattern may match
 – Think of them as “extra” alphabet symbols, though they actually consume ε (the zero-length string):
 – \(^a\) Pattern must match at beginning of string
 – \(a\$\) Pattern must match at end of string
 – \(\texttt{\backslash bword23\textbackslash b}\) “Word” boundary: \([a-zA-Z0-9_\textbackslash][^a-zA-Z0-9_\textbackslash]\) or \([^a-zA-Z0-9_\textbackslash][a-zA-Z0-9_\textbackslash]\)
 – \(\texttt{\backslash B23\textbackslash B}\) “Word” non-boundary
Regular Expressions

• **Escapes**
 – A backslash “\” placed before a character is said to “escape” (or “quote”) the character. There are six classes of escapes:

1. **Numeric character representation**: the octal or hexadecimal position in a character set: “\012” = “\xA”

2. **Meta-characters**: The characters which are syntactically meaningful to regular expressions, and therefore must be escaped in order to represent themselves in the alphabet of the regular expression: “[] () { } | ^ $. ? + * \” (note the inclusion of the backslash).

3. **“Special” escapes** (from the “C” language):
 - newline: “\n” = “\xA”
 - carriage return: “\r” = “\xD”
 - tab: “\t” = “\x9”
 - formfeed: “\f” = “\xC”
Regular Expressions

• **Escapes** (continued)

 – **Classes of escapes** (continued):

 4. **Aliases**: shortcuts for commonly used character classes. (Note that the capitalized version of these aliases refer to the complement of the alias’s character class):

 – whitespace: \s = \[\t\r\n\f\v\]
 – digit: \d = \[0-9]\n – word: \w = \[a-zA-Z0-9_]\n – non-whitespace: \S = \[^\t\r\n\f\]
 – non-digit: \D = \[^0-9]\n – non-word: \W = \[^a-zA-Z0-9_]\n
 5. **Memory/registers/back-references**: \1, \2, etc.

 6. **Self-escapes**: any character other than those which have special meaning can be escaped, but the escaping has no effect: the character still represents the regular language of the character itself.
Regular Expressions

- Memory/Registers/Back-references
 - Many regular expression languages include a memory/register/back-reference feature, in which sub-matches may be referred to later in the regular expression, and/or when performing replacement, in the replacement string:
 - Perl: `/(\w+)\s+1\b/` matches a repeated word
 - Python: `re.sub("(the\s+)the(\s+|\b)"","1",string)` removes the second of a pair of ‘the’s
 - Note: finite automata cannot be used to implement the memory feature.
Regular Expression Examples

Character classes and Kleene symbols

\[[A-Z] \] = one capital letter
\[[0-9] \] = one numerical digit
\[[st@!9] \] = s, t, @, ! or 9
\[[A-Z] \] = matches G or W or E
does not match GW or FA or h or fun
\[[A-Z]^+ \] = one or more consecutive capital letters
matches GW or FA or CRASH
\[[A-Z]? \] = zero or one capital letter
\[[A-Z]^* \] = zero, one or more consecutive capital letters
matches on eat or EAT or I

so, \[[A-Z]ate \]
matches Gate, Late, Pate, Fate, but not GATE or gate

and \[[A-Z]^+ate \]
matches: Gate, GRate, HEate, but not Grate or grate or STATE

and \[[A-Z]^*ate \]
matches: Gate, GRate, and ate, but not STATE, grate or Plate
Regular Expression Examples (cont’d)

[A-Za-z] = any single letter
so [A-Za-z]+ matches on any word composed of only letters,
but will not match on “words”: bi-weekly, yes@SU or IBM325
they will match on bi, weekly, yes, SU and IBM

a shortcut for [A-Za-z] is \w, which in Perl also includes _

so (\w)+ will match on Information, ZANY, rattskellar and jeuvbaew

\s will match whitespace
so (\w)+\s(\w+) will match real estate or Gen Xers
Some longer examples:

\[(A-Z)[a-z]+\s([a-z0-9]+)\]
 matches: Intel c09yt745 but not IBM series5000

\[A-Z]w+s\sw+w+\s\sw+\s\sw+\s[!]\]
 matches: The dog died!
 It also matches that portion of “he said, “The dog died!“

\[A-Z]w+s\sw+w+\s\sw+\s\sw+[!]\$
 matches: The dog died!
 But does not match “he said, “The dog died!“ because the $ indicates end of Line, and there is a quotation mark before the end of the line

\(\sw+ats?\s\)+
 parentheses define a pattern as a unit, so the above expression will match:
 Fat cats eat Bats that Splat
Regular Expression Examples (cont’d)

To match on part of speech tagged data:
\(\text{\texttt{\w+[-]?\w+\|[A-Z]+}} \) will match on:
- bi-weekly|RB
- camera|NN
- announced|VBD

\(\text{\texttt{\w+\|V[A-Z]+}} \) will match on:
- ruined|VBD
- singing|VBG
- Plant|VB
- says|VBZ

\(\text{\texttt{\w+\|VB[DN]}} \) will match on:
- coddled|VBN
- Rained|VBD
- But not changing|VBG
Regular Expression Examples (cont’d)

Phrase matching:

a\DT ([a-z]+\JJ[SR]?) (\w+\N[NPS]+)

matches: a\DT loud\JJ noise\NN
 a\DT better\JJR Cheerios\NNPS

(\w+\DT) (\w+\VB[DNG])* (\w+\N[NPS]+)+
matches: the\DT singing\VBG elephant\NN seals\NNS
 an\DT apple\NN
 an\DT IBM\NP computer\NN
 the\DT outdated\VBD aging\VBG Commodore\NNNP
 computer\NN hardware\NN
RE to ε-NFA Example

- Convert R= (ab+a)* to an NFA
 - We proceed in stages, starting from simple elements and working our way up

\[
\begin{align*}
\text{a} & \quad \rightarrow \quad \text{a} \\
\text{b} & \quad \rightarrow \quad \text{b} \\
\text{ab} & \quad \rightarrow \quad \text{a} \quad \varepsilon \quad \text{b} \\
\end{align*}
\]
RE to ε-NFA Example (2)

ab+a

\[(ab+a)^*\]
Conclusion

• Both regular expressions and finite-state automata represent regular languages.
• The basic regular expression operations are: concatenation, union/disjunction, and Kleene closure.
• The regular expression language is a powerful pattern-matching tool.
• Any regular expression can be automatically compiled into an NFA, to a DFA, and to a unique minimum-state DFA.
• An FSA can use any set of symbols for its alphabet, including letters and words.