The Greedy Method and Text Compression
The Greedy Method Technique

The greedy method is a general algorithm design paradigm, built on the following elements:

- **configurations**: different choices, collections, or values to find
- **objective function**: a score assigned to configurations, which we want to either maximize or minimize

It works best when applied to problems with the greedy-choice property:

- a globally-optimal solution can always be found by a series of local improvements from a starting configuration.
The Fractional Knapsack Problem (not in book)

Given: A set S of n items, with each item i having

- b_i - a positive benefit
- w_i - a positive weight

Goal: Choose items with maximum total benefit but with weight at most W.

If we are allowed to take fractional amounts, then this is the **fractional knapsack problem**.

- In this case, we let x_i denote the amount we take of item i

Objective: maximize

$$\sum_{i \in S} b_i \left(\frac{x_i}{w_i} \right)$$

Constraint:

$$\sum_{i \in S} x_i \leq W$$
Example

Given: A set S of n items, with each item i having
- b_i - a positive benefit
- w_i - a positive weight

Goal: Choose items with maximum total benefit but with weight at most W.

<table>
<thead>
<tr>
<th>Items:</th>
<th>Weight:</th>
<th>Benefit:</th>
<th>Value:</th>
<th>Value:($ per ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 ml</td>
<td>8 ml</td>
<td>2 ml</td>
<td>6 ml</td>
</tr>
<tr>
<td>1</td>
<td>$12</td>
<td>$32</td>
<td>$40</td>
<td>$30</td>
</tr>
<tr>
<td>2</td>
<td>$12</td>
<td>$32</td>
<td>$40</td>
<td>$30</td>
</tr>
<tr>
<td>3</td>
<td>$12</td>
<td>$32</td>
<td>$40</td>
<td>$30</td>
</tr>
<tr>
<td>4</td>
<td>$12</td>
<td>$32</td>
<td>$40</td>
<td>$30</td>
</tr>
<tr>
<td>5</td>
<td>$12</td>
<td>$32</td>
<td>$40</td>
<td>$30</td>
</tr>
</tbody>
</table>

Solution:
- 1 ml of 5
- 2 ml of 3
- 6 ml of 4
- 1 ml of 2
The Fractional Knapsack Algorithm

- Greedy choice: Keep taking item with highest value (benefit to weight ratio)
 - Since \(\sum_{i \in S} b_i (x_i / w_i) = \sum_{i \in S} (b_i / w_i) x_i \)
 - Run time: \(O(n \log n) \). Why?

- Correctness: Suppose there is a better solution
 - there is an item \(i \) with higher value than a chosen item \(j \), but \(x_i < w_i, x_j > 0 \) and \(v_i < v_j \)
 - If we substitute some \(i \) with \(j \), we get a better solution
 - How much of \(i \): \(\min\{w_i - x_i, x_j\} \)
 - Thus, there is no better solution than the greedy one

Algorithm \textit{fractionalKnapsack}(S, W)

- Input: set \(S \) of items w/ benefit \(b_i \) and weight \(w_i \); max. weight \(W \)
- Output: amount \(x_i \) of each item \(i \) to maximize benefit w/ weight at most \(W \)

\begin{algorithm}
\begin{algorithmic}
\FOR {each item \(i \) in \(S \)}
\STATE \(x_i \leftarrow 0 \)
\STATE \(v_i \leftarrow b_i / w_i \) \COMMENT{value}
\STATE \(w \leftarrow 0 \) \COMMENT{total weight}
\WHILE {\(w < W \)}
\STATE \textit{remove item} \(i \) w/ highest \(v_i \)
\STATE \(x_i \leftarrow \min\{w_i, W - w\} \)
\STATE \(w \leftarrow w + \min\{w_i, W - w\} \)
\ENDWHILE
\ENDFOR
\end{algorithmic}
\end{algorithm}
Task Scheduling
(not in book)

Given: a set T of n tasks, each having:
- A start time, s_i
- A finish time, f_i (where $s_i < f_i$)

Goal: Perform all the tasks using a minimum number of “machines.”

Machine 1

Machine 2

Machine 3

1 2 3 4 5 6 7 8 9
Task Scheduling Algorithm

- Greedy choice: consider tasks by their start time and use as few machines as possible with this order.
 - Run time: $O(n \log n)$. Why?
- Correctness: Suppose there is a better schedule.
 - We can use $k-1$ machines
 - The algorithm uses k
 - Let i be first task scheduled on machine k
 - Machine i must conflict with $k-1$ other tasks
 - But that means there is no non-conflicting schedule using $k-1$ machines

```
Algorithm taskSchedule(T)

Input: set $T$ of tasks w/ start time $s_i$ and finish time $f_i$
Output: non-conflicting schedule with minimum number of machines

$m \leftarrow 0$

while $T$ is not empty

  remove task $i$ w/ smallest $s_i$

  if there's a machine $j$ for $i$ then
    schedule $i$ on machine $j$
  else
    $m \leftarrow m + 1$
    schedule $i$ on machine $m$
```

© 2004 Goodrich, Tamassia
Example

Given: a set T of n tasks, each having:

- A start time, s_i
- A finish time, f_i (where $s_i < f_i$)
- $[1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8]$ (ordered by start)

Goal: Perform all tasks on min. number of machines
Text Compression

Given a string X, efficiently encode X into a smaller string Y

- Saves memory and/or bandwidth

Options:

- “edd...dbc”: 8 bits per character, so 72 bits
 - = ASCII
- “edd...dbc”: run length encoding “e1d6b1c1”, or 64 bits (in this case)
- “edd...dbc”: custom fixed code of 2 bits/letter, so 18 bits
 - = fixed code
- “edd...dbc”: variable length code would be 14 bits
 - = variable code (optimal)
Text Compression

- Given a string X, efficiently encode X into a smaller string Y
 - Saves memory and/or bandwidth

- A good approach: **Huffman encoding**
 - Compute frequency $f(c)$ for each character c.
 - Encode high-frequency characters with short code words.
 - No code word is a prefix for another code.
 - Use an optimal encoding tree to determine the code words.
Encoding Tree Example

- A **code** is a mapping of each character of an alphabet to a binary code-word
- A **prefix code** is a binary code such that no code-word is the prefix of another code-word
- An **encoding tree** represents a prefix code
 - Each external node stores a character
 - The code word of a character is given by the path from the root to the external node storing the character (0 for a left child and 1 for a right child)

<table>
<thead>
<tr>
<th>00</th>
<th>010</th>
<th>011</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

© 2004 Goodrich, Tamassia
Encoding Tree Optimization

- Given a text string X, we want to find a prefix code for the characters of X that yields a small encoding for X
 - Frequent characters should have long code-words
 - Rare characters should have short code-words
- Example
 - $X = \text{abracadabra}$
 - T_1 encodes X into 29 bits
 - T_2 encodes X into 24 bits
Huffman’s Algorithm

- Given a string X, Huffman’s algorithm construct a prefix code that minimizes the size of the encoding of X.
- It runs in time $O(n + d \log d)$, where n is the size of X and d is the number of distinct characters of X.
- A heap-based priority queue is used as an auxiliary structure.

Algorithm $HuffmanEncoding(X)$

Input string X of size n

Output optimal encoding trie for X

$C \leftarrow distinctCharacters(X)$

$computeFrequencies(C, X)$

$Q \leftarrow$ new empty heap

for all $c \in C$

$T \leftarrow$ new single-node tree storing c

$Q.insert(getFrequency(c), T)$

while $Q.size() > 1$

$f_1 \leftarrow Q.minKey()$

$T_1 \leftarrow Q.removeMin()$

$f_2 \leftarrow Q.minKey()$

$T_2 \leftarrow Q.removeMin()$

$T \leftarrow join(T_1, T_2)$

$Q.insert(f_1 + f_2, T)$

return $Q.removeMin()$
Example

X = abracadabra

Frequencies

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

© 2004 Goodrich, Tamassia
Additional Examples

lamamamia

Histogram:

- [a, 4], [m, 3], [i, 1], [l, 1]
Additional Examples

- lamamamia

Histogram:
- \([a, 4], [m, 3], [i, 1], [l, 1]\)
Additional Examples

Histogram: \([e, 49], [b, 11], [c, 8], [d, 12]\)
Histogram: [e, 49], [b, 11], [c, 8], [d, 12]
"eddbc" would be encoded into "01111100101"
(from 5 characters or 40 bits to 11 bits)
Extended Huffman Tree Example

String: a fast runner need never be afraid of the dark

<table>
<thead>
<tr>
<th>Character</th>
<th>a</th>
<th>b</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>h</th>
<th>i</th>
<th>k</th>
<th>n</th>
<th>o</th>
<th>r</th>
<th>s</th>
<th>t</th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>