Recursion and Fibonacci Sequence
The Recursion Pattern

- **Recursion**: when a method calls itself
- Classic example--the factorial function:
 - \(n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n \)
- Recursive definition:

\[
f(n) = \begin{cases}
1 & \text{if } n = 0 \\
n \cdot f(n-1) & \text{else}
\end{cases}
\]

- As a C++ method:
  ```cpp
  // recursive factorial function
  int recursiveFactorial(int n) {
    if (n == 0) return 1; // basis case
    else return n * recursiveFactorial(n-1); // recursive case
  }
  ```
Linear Recursion

- **Test for base cases**
 - Begin by testing for a set of base cases (there should be at least one).
 - Every possible chain of recursive calls must eventually reach a base case, and the handling of each base case should not use recursion.

- **Recur once**
 - Perform a single recursive call
 - This step may have a test that decides which of several possible recursive calls to make, but it should ultimately make just one of these calls
 - Define each possible recursive call so that it makes progress towards a base case.
Example of Linear Recursion

Algorithm LinearSum(A, n):

Input:
A integer array A and an integer n = 1, such that A has at least n elements

Output:
The sum of the first n integers in A

if n = 1 then
 return A[0]
else
 return LinearSum(A, n - 1) + A[n - 1]

Example recursion trace:

- LinearSum(A, 5)
 - LinearSum(A, 4)
 - LinearSum(A, 3)
 - LinearSum(A, 2)
 - LinearSum(A, 1)
 - return A[0] = 4
Reversing an Array

Algorithm ReverseArray\((A, i, j) \):

Input: An array \(A \) and nonnegative integer indices \(i \) and \(j \)

Output: The reversal of the elements in \(A \) starting at index \(i \) and ending at \(j \)

if \(i < j \) **then**

Swap \(A[i] \) and \(A[j] \)

ReverseArray\((A, i + 1, j - 1) \)

return
Defining Arguments for Recursion

- In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
- This sometimes requires we define additional parameters that are passed to the method.
- For example, we defined the array reversal method as `ReverseArray(A, i, j)`, not `ReverseArray(A)`.
Computing Powers

- The power function, \(p(x, n) = x^n \), can be defined recursively:

\[
p(x, n) = \begin{cases}
1 & \text{if } n = 0 \\
x \cdot p(x, n-1) & \text{else}
\end{cases}
\]

- This leads to a power function that runs in \(O(n) \) time (for we make \(n \) recursive calls).
- We can do better than this, however.
Recursive Squaring

- We can derive a more efficient linearly recursive algorithm by using repeated squaring:

\[
p(x, n) = \begin{cases}
1 & \text{if } x = 0 \\
 x \cdot p(x, (n - 1) / 2)^2 & \text{if } x > 0 \text{ is odd} \\
 p(x, n / 2)^2 & \text{if } x > 0 \text{ is even}
\end{cases}
\]

- For example,

\[
\begin{align*}
2^4 &= 2^{(4/2)^2} = (2^{4/2})^2 = (2^2)^2 = 4^2 = 16 \\
2^5 &= 2^{1+(4/2)^2} = 2(2^{4/2})^2 = 2(2^2)^2 = 2(4^2) = 32 \\
2^6 &= 2^{(6/2)^2} = (2^{6/2})^2 = (2^3)^2 = 8^2 = 64 \\
2^7 &= 2^{1+(6/2)^2} = 2(2^{6/2})^2 = 2(2^3)^2 = 2(8^2) = 128.
\end{align*}
\]
Recursive Squaring Method

Algorithm `Power(x, n)`:

Input: A number `x` and integer `n = 0`

Output: The value `x^n`

`if n = 0` then
` return 1`
`if n is odd` then
` y = Power(x, (n - 1)/2)`
` return x \cdot y \cdot y`
else
` y = Power(x, n/2)`
` return y \cdot y`
Analysis

Algorithm \(\text{Power}(x, n) \):

Input: A number \(x \) and integer \(n = 0 \)

Output: The value \(x^n \)

if \(n = 0 \) then
 return 1

if \(n \) is odd then
 \(y = \text{Power}(x, (n - 1)/2) \)
 return \(x \cdot y \cdot y \)

else
 \(y = \text{Power}(x, n/2) \)
 return \(y \cdot y \)

Each time we make a recursive call we halve the value of \(n \); hence, we make \(\log n \) recursive calls. That is, this method runs in \(O(\log n) \) time.

It is important that we use a variable twice here rather than calling the method twice.
Tail Recursion

- Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to non-recursive methods (which saves on some resources).
Reversing an Array

Algorithm ReverseArray(A, i, j):

Input: An array A and nonnegative integer indices i and j

Output: The reversal of the elements in A starting at index i and ending at j

if $i < j$ then
 Swap $A[i]$ and $A[j]$
 ReverseArray(A, $i+1$, $j-1$)
return
Tail Recursion

- Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to non-recursive methods (which saves on some resources).
- Example:

 Algorithm IterativeReverseArray(A, i, j):

 Input: An array A and nonnegative integer indices i and j

 Output: The reversal of the elements in A starting at index i and ending at j

 while i < j do
 Swap A[i] and A[j]
 i = i + 1
 j = j - 1
 return
Binary Recursion

- Binary recursion occurs whenever there are two recursive calls for each non-base case.
- Example: the DrawTicks method for drawing ticks on an English ruler.
A Binary Recursive Method for Drawing Ticks

// draw a tick with no label
public static void drawOneTick(int tickLength) {
 drawOneTick(tickLength, -1);
}

// draw one tick
public static void drawOneTick(int tickLength, int tickLabel) {
 for (int i = 0; i < tickLength; i++)
 System.out.print("-");
 if (tickLabel >= 0) System.out.print(" " + tickLabel);
 System.out.println();
}

public static void drawTicks(int tickLength) {
 if (tickLength > 0) {
 drawTicks(tickLength - 1); // recursively draw left ticks
 drawOneTick(tickLength); // draw center tick
 drawTicks(tickLength - 1); // recursively draw right ticks
 }
}

public static void drawRuler(int nInches, int majorLength) {
 drawOneTick(majorLength, 0); // draw tick 0 and its label
 for (int i = 1; i <= nInches; i++)
 {drawTicks(majorLength - 1); // draw ticks for this inch
drawOneTick(majorLength, i); // draw tick i and its label
 }
}
Fibonacci Numbers

- Useful for
 - Stock market
 - Search
 - And more...
Fibonacci Search (Kiefer et al. 1953)

- Similar to binary search, but
 - Instead of dividing an array by the midpoint during search,
 - You use the largest $F_N \leq$ midpoint
- Since

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>B / A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1.666666666...</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>1.6</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>1.625</td>
</tr>
<tr>
<td>13</td>
<td>21</td>
<td>1.615384615...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>144</td>
<td>233</td>
<td>1.618055556...</td>
</tr>
<tr>
<td>233</td>
<td>377</td>
<td>1.618025751...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Fibonacci Search (Kiefer et al. 1953)

- Similar to binary search, but
 - Instead of dividing an array by the midpoint during search,
 - You use the largest $F_n \leq$ midpoint
 - This results in dividing the area roughly by the Golden Ratio (e.g., 62% and 38%)
 - In practice has slightly better average time performance (still $O(\log n)$)
Golden Ratio

- 1.61803398875
Computing Fibonacci Numbers

- Fibonacci numbers are defined recursively:
 \[F_0 = 0 \]
 \[F_1 = 1 \]
 \[F_i = F_{i-1} + F_{i-2} \quad \text{for} \quad i > 1. \]

- Recursive algorithm (first attempt):

 Algorithm \textit{BinaryFib}(k):

 \textbf{Input:} Nonnegative integer \(k \)

 \textbf{Output:} The \(k \)th Fibonacci number \(F_k \)

 \textbf{if} \(k = 1 \) \textbf{then}

 return \(k \)

 \textbf{else}

 return \(\text{BinaryFib}(k - 1) + \text{BinaryFib}(k - 2) \)
Analysis

- Let n_k be the number of recursive calls by $\text{BinaryFib}(k)$
 - $n_0 = 1$
 - $n_1 = 1$
 - $n_2 = n_1 + n_0 + 1 = 1 + 1 + 1 = 3$
 - $n_3 = n_2 + n_1 + 1 = 3 + 1 + 1 = 5$
 - $n_4 = n_3 + n_2 + 1 = 5 + 3 + 1 = 9$
 - $n_5 = n_4 + n_3 + 1 = 9 + 5 + 1 = 15$
 - $n_6 = n_5 + n_4 + 1 = 15 + 9 + 1 = 25$
 - $n_7 = n_6 + n_5 + 1 = 25 + 15 + 1 = 41$
 - $n_8 = n_7 + n_6 + 1 = 41 + 25 + 1 = 67$.
- Note that n_k at least doubles every other time
- That is, $n_k > 2^{k/2}$. It is exponential!
A Better Fibonacci Algorithm

- Use linear recursion in this case

Algorithm LinearFibonaccci(k):

Input: A nonnegative integer k

Output: Pair of Fibonacci numbers \((F_k, F_{k-1})\)

if \(k = 1\) then

return \((k, 0)\)

else

\((i, j) = \text{LinearFibonacci}(k - 1)\)

return \((i + j, i)\)

- **LinearFibonacci** makes \(k-1\) recursive calls

- This is also a form of “dynamic programming”
Even Better Fibonacci Algorithm

- Binet's Fibonacci number formula:
 \[u_n = u_{n-1} + u_{n-2} \text{ for } n > 1 \]

 where

 \[u_0 = 0, \]
 \[u_1 = 1, \]

 \[u_n = \frac{(1 + \sqrt{5})^n - (1 - \sqrt{5})^n}{2^n \sqrt{5}} \]