Graphs: Recap

Graph:
- SFO
- ORD
- LAX
- DFW

Connections:
- SFO to LAX: 337
- LAX to DFW: 1233
- DFW to ORD: 802
- ORD to SFO: 1843
Graphs: Basics

- Directed vs. undirected graph
 - e.g. edges have a direction associated with them

- (Non-uniformly) Weighted graph
 - e.g. edges have a weight associated with them

- Properties
 - $\sum_{n} \deg(v_n) = 2m$
 - $m \leq n \ (n - 1)/2$

- Representation
 - Edge list structure,
 - Adjacency list structure, or
 - Adjacency matrix structure
Graphs: Traversals

Depth-first Search
- Traverse deeply first
- $O(n+m)$

Breadth-first Search
- Traverse broadly first ("breadth")
- $O(n+m)$
Graphs: Terminology

- Path
- Connected
- Subgraph
- Spanning
- Biconnected
 - e.g., separation edges or vertices

What are these and how do you find them?
- Connected component
- Spanning Subgraph
- Maximally-connected Subgraph
- Spanning Tree
- Spanning Forest
- Biconnected Components
Graphs: DFS vs. BFS

Applications

<table>
<thead>
<tr>
<th></th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Shortest paths (for uniformly weighted graphs)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Biconnected components</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

DFS

BFS

Applications
Directed Graphs: Terminology

- **Reachability**
 - Is a vertex u “reachable” from v
 - e.g., can you get to MIA from HNL?

- **Strongly-Connected Components**
 - Can you get to any city from any city

- **Transitive Closure**
 - If I can get to MIA from HNL and to JFK from MIA, then I can get to JFK from HNL
 - The transitive closure graph of a graph G extracts this information
 - Algorithms:
 - Naïve: $O(n(n+m))$ to $O(n^3)$
 - Floyd-Warshall Algorithm: $O(n^3)$ but low-cost
Directed Graphs: Terminology

Directed Acyclic Graph or DAG
- A directed graph with no cycles
- Permits a topological sorting
 - e.g., a sorting of the nodes from beginning to end
 - A topological sorting can be done using a modified DFS traversal
Graphs: Shortest Path

Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v

- BFS gives us shortest paths for a uniformly weighted graph – this is the concept generalized to weighted graphs

Note: related to Traveling Salesman problem which is finding the shortest path that visits all vertices (an NP-complete problem)
Graphs: Shortest Path

Algorithms for finding shortest paths from a start vertex

- Dijkstra’s
 - Naively grow a “cloud of connected vertices”
 - Assumes non-negative weights
 - $O(m \log n)$

- Bellman-Ford’s
 - Extend’s Dijkstra’s by carrying along the total weight so far during the expansion
 - Supports negative weights
 - $O(nm)$

- DAG-based
 - Assumes a DAG
 - Uses topological sorting
 - $O(n+m)$
Graphs: Shortest Path

All shortest path pairs

- Dijkstra’s
 - $O(nm\log n)$
- Bellman Ford’s
 - $O(n^2m)$
- Modified Floyd-Warshall
 - $O(n^3)$
Graphs: Minimum Spanning Tree

- A spanning tree of a weighted graph with minimum total edge weight
 - e.g. the lowest cost network uniting all clients
Graphs: Minimum Spanning Tree

Algorithms

- **Prim-Jarnik’s**
 - Similar to Dijkstra’s: grows a cloud of connected vertices
 - $O(m \log n)$

- **Kruskal’s**
 - Maintains a forest of growing clouds of vertices
 - $O((n+m) \log n)$

- **Baruvka’s**
 - Similar to Kruskal’s but at each iteration halves the number of connected components
 - $O(m \log n)$
Fun Fact: Fastest MST Algorithm

\[O(m\alpha) \]
- \(\alpha \) is function of \((m, n)\) but in practice is \(\leq 4\)

Based on B. Chazelle’s “Soft Heap”
- Amortized cost of operations is \(O(1)\) except insert, which is \(O(\log 1/e)\), for \(e \in [0, 1/2]\)
- At expense of \(e^n\) of keys being “corrupted”, faster heap is obtained