Breadth-First Search
Outline and Reading

Breadth-first search
- Algorithm
- Example
- Properties
- Analysis
- Applications

DFS vs. BFS
- Comparison of applications
- Comparison of edge labels
Breadth-First Search

- **Breadth-first search (BFS)** is a general technique for traversing a graph.
- A BFS traversal of a graph G:
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- BFS on a graph with \(n \) vertices and \(m \) edges takes \(O(n + m) \) time.
- BFS can be further extended to solve other graph problems:
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one
(DFS Example)

- **unexplored vertex**
- **visited vertex**
- **unexplored edge**
- **discovery edge**
- **back edge**
(DFS Example)
BFS Example

- **A** unexplored vertex
- **visited vertex**
- **unexplored edge**
- **discovery edge**
- **cross edge**

L_0

L_1

L_0

L_1
BFS Example (cont.)
BFS Example (cont.)

Breadth-First Search
BFS Algorithm

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm BFS(G)

Input graph G

Output labeling of the edges and partition of the vertices of G

for all $u \in G.\text{vertices}()$

setLabel(u, UNEXPLORED)

for all $e \in G.\text{edges}()$

setLabel(e, UNEXPLORED)

for all $v \in G.\text{vertices}()$

if $\text{getLabel}(v) = \text{UNEXPLORED}$

BFS(G, v)

Algorithm BFS(G, s)

$L_0 \leftarrow$ new empty sequence

$L_0.\text{insertLast}(s)$

setLabel(s, VISITED)

$i \leftarrow 0$

while $\neg L_i.\text{isEmpty}()$

$L_{i+1} \leftarrow$ new empty sequence

for all $v \in L_i.\text{elements}()$

for all $e \in G.\text{incidentEdges}(v)$

if getLabel(e) = UNEXPLORED

$w \leftarrow \text{opposite}(v,e)$

if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)

setLabel(w, VISITED)

$L_{i+1}.\text{insertLast}(w)$

else

setLabel(e, CROSS)

$i \leftarrow i + 1$
Properties

Notation

\(G_s \): connected component of \(s \)

Property 1

\(BFS(G, s) \) visits all the vertices and edges of \(G_s \)

Property 2

The discovery edges labeled by \(BFS(G, s) \) form a spanning tree \(T_s \) of \(G_s \)

Property 3

For each vertex \(v \) in \(L_i \)
- The path of \(T_s \) from \(s \) to \(v \) has \(i \) edges
- Every path from \(s \) to \(v \) in \(G_s \) has at least \(i \) edges
Analysis

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_i
- Method $\text{incidentEdges}()$ is called once for each vertex
- BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_v \deg(v) = 2m$
Applications

Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $O(n + m)$ time:

- Compute the connected components of G
- Compute a spanning forest of G
- Find a simple cycle in G, or report that G is a forest
- Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists
DFS vs. BFS

Applications

<table>
<thead>
<tr>
<th></th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Biconnected components</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

DFS: Breadth-First Search

BFS: Depth-First Search
DFS vs. BFS (cont.)

Back edge \((v, w)\)
- \(w\) is an ancestor of \(v\) in the tree of discovery edges

Cross edge \((v, w)\)
- \(w\) is in the same level as \(v\) or in the next level in the tree of discovery edges