Quick-Sort

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4
7 9 → 7 9
2 → 2
9 → 9
Outline and Reading

Quick-sort
 ■ Algorithm
 ■ Partition step
 ■ Quick-sort tree
 ■ Execution example

Analysis of quick-sort

In-place quick-sort

Summary of sorting algorithms
Quick-Sort

Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:

- **Divide**: pick a random element \(x \) (called pivot) and partition \(S \) into
 - \(L \) elements less than \(x \)
 - \(E \) elements equal \(x \)
 - \(G \) elements greater than \(x \)
- **Recur**: sort \(L \) and \(G \)
- **Conquer**: join \(L \), \(E \) and \(G \)
Isn’t that Merge-Sort?

Quick-Sort is similar to Merge-Sort but with several key differences – details later.
Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes $O(1)$ time
- Thus, the partition step of quick-sort takes $O(n)$ time

Algorithm $\text{partition}(S, p)$

Input sequence S, position p of pivot

Output subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, resp.

L, E, $G \leftarrow$ empty sequences

$x \leftarrow S.\text{remove}(p)$

while $\neg S.\text{isEmpty}()$

 $y \leftarrow S.\text{remove}(S.\text{first}())$

 if $y < x$
 $L.\text{insertLast}(y)$
 else if $y = x$
 $E.\text{insertLast}(y)$
 else {
 $y > x$
 $G.\text{insertLast}(y)$

return L, E, G
Quick-Sort Tree

An execution of quick-sort is depicted by a binary tree
- Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1
Execution Example

Pivot selection

Quick-Sort
Execution Example

Pivot selection, e.g. "6"

7 2 9 4 3 7 6 1

Quick-Sort
Execution Example (cont.)

Partition, recursive call, pivot selection

2 4 3 1

7 2 9 4 3 7 6 1
Execution Example (cont.)

Partition, recursive call, base case

Quick-Sort 10
Execution Example (cont.)

Recursive call, …, base case, join

Quick-Sort
Execution Example (cont.)

Recursive call, pivot selection

7 2 9 4 3 7 6 1

2 4 3 1 \rightarrow 1 2 3 4

1 \rightarrow 1

4 3 \rightarrow 3 4

4 \rightarrow 4

7 9 7

Quick-Sort
Execution Example (cont.)

Partition, ..., recursive call, base case
Execution Example (cont.)

Join, join

```
7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9
```

```
2 4 3 1 → 1 2 3 4
```

```
4 3 → 3 4
```

```
1 → 1
```

```
9 → 9
```

Quick-Sort
Worst-case Running Time

When does the worst-case running time occur?
- When the pivot is the unique minimum or maximum element
- In such cases, one of L and G has size $n - 1$ and the other size 0
- The running time is proportional to the sum
 $$n + (n - 1) + \ldots + 2 + 1$$
- Thus, the worst-case running time of quick-sort is $O(n^2)$
Consider a recursive call of quick-sort on a sequence of size \(s \):

- **Good call**: the sizes of \(L \) and \(G \) are each less than \(3s/4 \)
- **Bad call**: one of \(L \) and \(G \) has size greater than \(3s/4 \)

A call is **good** with what probability?

- 1/2 of the possible pivots cause good calls.
Expected Running Time, Part 2

(Probabilistic Fact: The expected number of coin tosses required in order to get \(k \) heads is \(2k \))

For a node of depth \(i \), we expect
- How many of the ancestor calls to be good?
 - \(i/2 \) ancestors
- The size of the input sequence for the current call is at most
 - \((3/4)^{i/2} n\)

Therefore, we have
- For a node of depth \(2\log_{4/3} n \), the expected input size is one
- Thus, the expected height of the quick-sort tree is \(O(\log n) \)

The amount or work done at the nodes of the same depth is \(O(n) \)

Hence, the expected running time of quick-sort is \(O(n \log n) \)
In-Place Quick-Sort

Quick-sort can be implemented to run in-place.

In the partition step, we use replace operations to rearrange the elements of the input sequence such that:

- the elements less than the pivot have rank less than h
- the elements equal to the pivot have rank between h and k
- the elements greater than the pivot have rank greater than k

The recursive calls consider:

- elements with rank less than h
- elements with rank greater than k

Algorithm `inPlaceQuickSort(S, l, r)`

Input sequence S, ranks l and r

Output sequence S with the elements of rank between l and r rearranged in increasing order

if $l \geq r$

return

$i \leftarrow$ a random integer between l and r

$x \leftarrow S.eleAtRank(i)$

$(h, k) \leftarrow inPlacePartition(x)$

`inPlaceQuickSort(S, l, h - 1)`

`inPlaceQuickSort(S, k + 1, r)`
In-Place Partitioning

Perform the partition with pivot Y using two indices to split S into L and EYG (a similar method can split EYG into E and G)

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9
Quick-Sort

In-Place Partitioning

Perform the partition with pivot Y using two indices to split S into L and EYG (a similar method can split EYG into E and G)

\[\begin{array}{c}
\text{j} & \text{k} \\
3 & 2 & 5 & 1 & 0 & 7 & 3 & 5 & 9 & 2 & 7 & 9 & 8 & 9 & 7 & 6 & 9
\end{array} \]

("Y" pivot = 6)

Repeat

- Scan j to the right until finding an element \(\geq x \)
- Scan k to the left until finding an element \(< x \)
- Swap elements at indices j and k

\[\begin{array}{c}
\text{j} & \text{k} \\
3 & 2 & 5 & 1 & 0 & 7 & 3 & 5 & 9 & 2 & 7 & 9 & 8 & 9 & 7 & 6 & 9
\end{array} \]
In-Place Partitioning

Perform the partition with pivot Y using two indices to split S into L and EYG (a similar method can split EYG into E and G)

```
3 2 5 1 0 7 3 5 9 2 7 9 8 9 7
```

("Y" pivot = 6)

Repeat
- Scan j to the right until finding an element ≥ x
- Scan k to the left until finding an element < x
- Swap elements at indices j and k

Until j and k meet

```
3 2 5 1 0 7 3 5 9 2 7 9 8 9 7
```

Quick-Sort
In-Place Partitioning

- Perform the partition with pivot Y using two indices to split S into L and EYG (a similar method can split EYG into E and G)

```
3  2  5  1  0  7  3  5  9  2  7  9  8  9  7
```

- Repeat
 - Scan j to the right until finding an element \(\geq x \)
 - Scan k to the left until finding an element \(< x\)
 - Swap elements at indices j and k

- Until j and k meet

```
3  2  5  1  0  2  3  5  9  7  7  9  8  9  7
```

(“Y” pivot = 6)

(done with all partitioning operations and eventually sorting the array)
Isn’t all this Merge-Sort?

Quick-Sort is similar to Merge-Sort but with the following key differences:

- (In-place) Quick-Sort uses at most $O(\log n)$ space vs. Merge-Sort uses $O(n)$ space.
- Quick-Sort is $O(n^2)$ vs. Merge-Sort which is $O(n \log n)$
 - But a “good” Quick-Sort is $O(n \log n)$ or better
- Quick-Sort implementation details are more friendly towards current computer architecture and thus in practice the “constant” is very small
3-Way Quicksort

Instead of partitioning into 2 sets each time, partition into 3 sets:

- Less than set
- Equal than set
- Greater than set

Helps slightly with many repeated keys
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection-sort</td>
<td>$O(n^2)$</td>
<td>in-place, slow (good for small inputs)</td>
</tr>
<tr>
<td>insertion-sort</td>
<td>$O(n^2)$</td>
<td>in-place, O(n) for almost sorted</td>
</tr>
<tr>
<td>quick-sort</td>
<td>$O(n \log n)$</td>
<td>in-place, randomized, fastest (good for large inputs)</td>
</tr>
<tr>
<td>heap-sort</td>
<td>$O(n \log n)$</td>
<td>in-place, O(n) first results</td>
</tr>
<tr>
<td>merge-sort</td>
<td>$O(n \log n)$</td>
<td>sequential data access, fast (good for huge inputs)</td>
</tr>
</tbody>
</table>
http://www.sorting-algorithms.com/