Divide-and-Conquer
Outline and Reading

- Divide-and-conquer
- Review Merge-sort
- Recurrence Equations
 - Iterative substitution
 - Recursion trees
 - Guess-and-test
 - The master method
- Integer Multiplication
Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - **Divide**: divide the input data S in two or more disjoint subsets S_1, S_2, ...
 - **Recur**: solve the subproblems recursively
 - **Conquer**: combine the solutions for S_1, S_2, ..., into a solution for S

- The base case for the recursion are subproblems of constant size
- Analysis can be done using **recurrence equations**
Merge-Sort Review

Merge-sort on an input sequence S with n elements consists of three steps:

- **Divide**: partition S into two sequences S_1 and S_2 of about $n/2$ elements each.
- **Recur**: recursively sort S_1 and S_2.
- **Conquer**: merge S_1 and S_2 into a unique sorted sequence.

Algorithm $\text{mergeSort}(S, C)$

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

if S.size() > 1

$(S_1, S_2) \leftarrow \text{partition}(S, n/2)$

$\text{mergeSort}(S_1, C)$

$\text{mergeSort}(S_2, C)$

$S \leftarrow \text{merge}(S_1, S_2)$
Recurrence Equation Analysis

- The conquer step of merge-sort consists of merging two sorted sequences, each with \(\frac{n}{2} \) elements and implemented by means of a doubly linked list, takes at most \(bn \) steps, for some constant \(b \).
- Likewise, the basis case \((n < 2) \) will take at most \(b \) most steps.
- Therefore, if we let \(T(n) \) denote the running time of merge-sort:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases}
\]

- We can therefore analyze the running time of merge-sort by finding a **closed form solution** to the above equation.
 - That is, a solution that has \(T(n) \) only on the left-hand side.
Iterative Substitution

In the iterative substitution, or “plug-and-chug,” technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern:

\[T(n) = 2T\left(\frac{n}{2}\right) + bn \]

\[= 2\left(2T\left(\frac{n}{2^2}\right) + b\left(\frac{n}{2}\right)\right) + bn \]

\[= 2^2 T\left(\frac{n}{2^2}\right) + 2bn \]

\[= 2^3 T\left(\frac{n}{2^3}\right) + 3bn \]

\[= 2^4 T\left(\frac{n}{2^4}\right) + 4bn \]

\[= \ldots \]

\[= 2^i T\left(\frac{n}{2^i}\right) + ibn \]

Note that base, \(T(n) = b, \) case occurs when \(2^i = n. \) That is, \(i = \log n. \)

So,

\[T(n) = bn + bn \log n \]

Thus, \(T(n) \) is \(O(n \log n) \).
The Recursion Tree

Draw the recursion tree for the recurrence relation and look for a pattern:

\[T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases} \]

<table>
<thead>
<tr>
<th>depth</th>
<th>T’s size</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(bn)</td>
</tr>
<tr>
<td>1</td>
<td>(n/2)</td>
<td>(bn)</td>
</tr>
<tr>
<td>(i)</td>
<td>(n/2^i)</td>
<td>(bn)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Total time = \(bn + bn \log n \)
(last level plus all previous levels)
Guess-and-Test Method

In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
\end{cases}
\]

Guess: \(T(n) < cn \log n \).

\[
T(n) = 2T(n/2) + bn \log n \\
= 2(c(n/2) \log(n/2)) + bn \log n \\
= cn(\log n - \log 2) + bn \log n \\
= cn \log n - cn + bn \log n
\]

Wrong: we cannot make this last line be less than \(cn \log n \).
Guess-and-Test Method, Part 2

Recall the recurrence equation:

\[T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
\end{cases} \]

Guess #2: \(T(n) < cn \log^2 n \).

\[
T(n) = 2T(n/2) + bn \log n \\
= 2(c(n/2) \log^2 (n/2)) + bn \log n \\
= cn(\log n - \log 2)^2 + bn \log n \\
= cn \log^2 n - 2cn \log n + cn + bn \log n \\
\leq cn \log^2 n
\]

if \(c > b \).

So, \(T(n) \) is \(O(n \log^2 n) \).

In general, to use this method, you need to have a good guess and you need to be good at induction proofs.
Master Method

Many divide-and-conquer recurrence equations have the form:

\[
T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases}
\]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)

2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)

3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).
Master Method

Intuitively, depending on how $f(n)$ compares to $n^{\log_b a}$,

- Case 1 is when $f(n) < n^{\log_b a}$
 - “polynomially smaller…”
- Case 2 is when $f(n) = n^{\log_b a}$
- Case 3 is when $f(n) > n^{\log_b a}$
 - “polynomially larger…”

But this is only roughly speaking and some $f(n)$ are not supported!

E.g., $T(n) = T(n/2) + \log n$
Master Method, Example 1

The form:
\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:
1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:
\[T(n) = 4T(n/2) + n \]

Solution: \(\log_b a = 2 \), so case 1 says \(T(n) \) is \(O(n^2) \).
Master Method, Example 2

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \),
 provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 2T(n/2) + n \log n \]

Solution: \(\log_b a = 1 \),
so case 2 says \(T(n) \) is \(O(n \log^2 n) \).
Master Method, Example 3

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. If \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \).
2. If \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \).
3. If \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = T(n/3) + n \log n \]

Solution: \(\log_b a = 0 \),
so case 3 says \(T(n) \) is \(O(n \log n) \).
Master Method, Example 4

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT\left(\frac{n}{b}\right) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af\left(\frac{n}{b}\right) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 8T\left(\frac{n}{2}\right) + n^2 \]

Solution: \(\log_b a = 3 \),
so case 1 says \(T(n) \) is \(O(n^3) \).
Master Method, Example 5

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \),
 provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 9T(n/3) + n^3 \]

Solution: \(\log_b a = 2 \),
so case 3 says \(T(n) \) is \(O(n^3) \).
Master Method, Example 6

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = T(n/2) + 1 \] (binary search)

Solution: \(\log_b a = 0 \),
so case 2 says \(T(n) \) is \(O(\log n) \).
Master Method, Example 7

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. If \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. If \(f(n) \) is \(\Theta(n^{\log_b a} \log^k n) \), then \(T(n) \) is \(\Theta(n^{\log_b a} \log^{k+1} n) \)
3. If \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 2T(n/2) + \log n \quad \text{(heap construction)} \]

Solution: \(\log_b a = 1 \),
so case 1 says \(T(n) \) is \(O(n) \).
Iterative “Proof” of the Master Theorem

Using iterative substitution, let us see if we can find a pattern:

\[T(n) = aT(n/b) + f(n) \]

\[= a(aT(n/b^2) + f(n/b)) + bn \]

\[= a^2T(n/b^2) + af(n/b) + f(n) \]

\[= a^3T(n/b^3) + a^2f(n/b^2) + af(n/b) + f(n) \]

\[= \ldots \]

\[= a^{\log_b n}T(1) + \sum_{i=0}^{(\log_b n)-1} a^i f(n/b^i) \]

\[= n^{\log_b a}T(1) + \sum_{i=0}^{(\log_b n)-1} a^i f(n/b^i) \]

We then distinguish the three cases as

- The first term is dominant
- Each part of the summation is equally dominant
- The summation is a geometric series
Algorithm: Multiply two n-bit integers I and J.

- Divide step: Split I and J into high-order and low-order bits
 \[I = I_h 2^{n/2} + I_l \]
 \[J = J_h 2^{n/2} + J_l \]

- We can then define $I \times J$ by multiplying the parts and adding:
 \[I \times J = (I_h 2^{n/2} + I_l) \times (J_h 2^{n/2} + J_l) \]
 \[= I_h J_h 2^n + I_h J_l 2^{n/2} + I_l J_h 2^{n/2} + I_l J_l \]

- So, $T(n) = 4T(n/2) + n$, which implies $T(n)$ is $O(n^2)$.
- But that is no better than the algorithm we learned in grade school.
Algorithm: Multiply two n-bit integers I and J.

- **Divide step:** Split I and J into high-order and low-order bits

 $$I = I_h 2^{n/2} + I_l$$

 $$J = J_h 2^{n/2} + J_l$$

- **Observe that there is a different way to multiply parts:**

 $$I \times J = I_h J_h 2^n + [(I_h - I_l)(J_l - J_h) + I_h J_h + I_l J_l]2^{n/2} + I_l J_l$$

 $$= I_h J_h 2^n + [(I_h J_h - I_l J_h - I_h J_l + I_l J_l) + I_h J_h + I_l J_l]2^{n/2} + I_l J_l$$

 $$= I_h J_h 2^n + (I_h J_l + I_l J_h)2^{n/2} + I_l J_l$$

- **So,** $T(n) = 3T(n/2) + n$, which implies $T(n)$ is $O(n^{\log_2 3})$, by the Master Theorem.

- **Thus,** $T(n)$ is $O(n^{1.585})$.

Divide-and-Conquer