Red-Black Trees
(2,4) Trees

Good
- $O(\log n)$ worst case performance for search/insert/delete

Bad
- Non-standard trees (i.e., “not binary trees”)
- Implementation complexity
Improvement to (2,4) Trees

Currently, we perform constant time “tree-correction” operations that maintain the $O(\log n)$ tree height.

So, can we perform constant time “tree-correction” operations on a standard binary tree and maintain $O(\log n)$ tree height?
Ideas?

“we have stuff like this”

“we want stuff like this”

Welcome to the world of Red-Black trees…
From (2,4) to Red-Black Trees

- A red-black tree is a representation of a (2,4) tree by means of a binary tree whose nodes are colored **red** or **black**
- In comparison with its associated (2,4) tree, a red-black tree has
 - same logarithmic time performance
 - simpler implementation with a single (binary-tree-like) node type
A red-black tree can also be defined as a binary search tree that satisfies the following properties:

- **Root Property**: the root is black
- **External Property**: every leaf is black
- **Internal Property**: the children of a red node are black
- **Depth Property**: all leaves have the same black depth
Theorem: A red-black tree storing \(n \) items has height \(O(\log n) \)

Proof:
- The height of a red-black tree is at most twice the height of its associated (2,4) tree, which is \(O(\log n) \)
- (Why?)

Since a red-black tree is a binary tree, the search algorithm for a red-black search tree is the same as that for a binary search tree

By the above theorem, searching in a red-black tree takes \(O(\log n) \) time
Red-Black Tree Operations

- **Search**
 - Depends on height of tree, thus searching with \(n \) items takes \(O(\log n) \)

- **Insert**
 - Coming up next…

- **Delete**
 - Coming up next next…
Insertion

- To perform operation \texttt{insertItem}(k, o), we execute the insertion algorithm for binary search trees.
- ...and color red the newly inserted node \(z \) unless it is the root.
(Insertion for binary trees)

- To perform operation `insertItem(k, o)`, we search for key `k`.
- Assume `k` is not already in the tree, and let `w` be the leaf reached by the search.
- We insert `k` at node `w` and expand `w` into an internal node.
- Example: insert 5
Insertion

To perform operation `insertItem(k, o)`, we execute the insertion algorithm for binary search trees

..and color red the newly inserted node `z` unless it is the root

- We preserve the root, external, and depth properties
- If the parent `v` of `z` is black, we also preserve the internal property and we are done
- Else (`v` is red) we have a double red (i.e., a violation of the internal property), which requires a reorganization of the tree

Example where the insertion of 4 causes a double red:

![Diagram of red-black tree before and after insertion]

This is bad
What can we do?

Example where the insertion of 4 causes a double red:
Remedying a Double Red

Consider a double red with child z and parent v, and let w be the sibling of v.

Case 1: w is black
- The double red is an incorrect replacement of a 4-node
- Solution:
 - we change the 4-node replacement = “restructuring”

Case 2: w is red
- The double red corresponds to an overflow
- Solution:
 - we perform the equivalent of a split = “recoloring”
Restructuring

- A restructuring remedies a child-parent double red when the parent red node has a black sibling.
- It is equivalent to restoring the correct replacement of a 4-node.
- The internal property is restored and the other properties are preserved.

![Restructuring Diagram]
Restructuring (cont.)

There are several restructuring configurations depending on whether the double red nodes are left or right children

- How many?

i.e., four possible \textit{rotations} of the 4-node
Restructuring (cont.)

Note: sometimes restructuring operations are referred to as “rotation operations”
Remedying a Double Red

Consider a double red with child \(z \) and parent \(v \), and let \(w \) be the sibling of \(v \).

Case 1: \(w \) is black
- The double red is an incorrect replacement of a 4-node
- **Solution:**
 - we change the 4-node replacement = “restructuring”

Case 2: \(w \) is red
- The double red corresponds to an overflow
- **Solution:**
 - we perform the equivalent of a split = “recoloring”
Recoloring

- A recoloring remedies a child-parent double red when the parent red node has a red sibling.
- The parent v and its sibling w become black and the grandparent u becomes red, unless it is the root.
- It is equivalent to performing a split on a 5-node.
- The double red violation may propagate to the grandparent u.

![Diagram showing recoloring process and corresponding trees.](image-url)
Analysis of Insertion

Algorithm $\text{insertItem}(k, o)$

1. We search for key k to locate the insertion node z

2. We add the new item (k, o) at node z and color z red

3. while $\text{doubleRed}(z)$

 if $\text{isBlack}(\text{ sibling}(\text{parent}(z)))$

 $z \leftarrow \text{restructure}(z)$

 return

 else {

 $\text{sibling}(\text{parent}(z))$ is red

 $z \leftarrow \text{recolor}(z)$

Recall that a red-black tree has $O(\log n)$ height

Step 1 takes

- $O(\log n)$ time because we visit $O(\log n)$ nodes

Step 2 takes

- $O(1)$ time

Step 3 takes

- $O(\log n)$ time

- Because we perform $O(\log n)$ recolorings, each taking $O(1)$ time, and

- at most one restructuring taking $O(1)$ time

Thus, an insertion in a red-black tree takes $O(\log n)$ time
Deletion

To perform operation $\text{remove}(k)$, we first execute the deletion algorithm for binary search trees.
(Deletion for binary trees)

Three cases:

- Zero children
- One child
- Two children
(Deletion: zero children)

- Must be a leaf node - simple (e.g., remove 5)
 - Assume key k is in tree, and let v be the node storing k
 - We search for key k
 - Remove node
(Deletion: one child)

To perform operation, we search for key \(k \) (e.g., remove 4)

Assume key \(k \) is in tree, and let \(v \) be the node storing \(k \)

If node \(v \) has one leaf child \(u \), we remove \(v \) and \(u \) from the tree with operation \(\text{removeAboveExternal}(u) \)
(Deletion: two children)

What if the key k to be removed has **two** internal nodes as children, e.g. "remove 3"

- we find the internal node w that follows v in an inorder traversal
- we copy $key(w)$ into node v
- we remove node w and its left child z (which must be a leaf) by means of operation $removeAboveExternal(z)$
Deletion

To perform operation remove(k), we first execute the deletion algorithm for binary search trees.

Let v be the internal node removed, w the external node removed, and r the sibling of w.

- If either v or r was red, we color r black and we are done.
- Else (v and r were both black) we color r double black, which is a violation of the internal property requiring a reorganization of the tree.

Example where the deletion of 8 causes a double black:
What can we do?

Example where the deletion of 8 causes a double black:
Remedying a Double Black

The algorithm for remedying a double black node with sibling \(y \) considers three cases:

Case 1: \(y \) is black and has a red child
- We perform a **restructuring**, equivalent to a **transfer**, and we are done.

Case 2: \(y \) is black and its children are both black
- We perform a **recoloring**, equivalent to a **fusion**, which may propagate up the double black violation.

Case 3: \(y \) is red
- We perform an **adjustment**, equivalent to choosing a different representation of a 3-node, after which either Case 1 or Case 2 applies.

Deletion in a red-black tree takes \(O(\log n) \) time.
Red-Black Tree Reorganization

Insertion

<table>
<thead>
<tr>
<th>Red-black tree action</th>
<th>(2,4) tree action</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>restructuring</td>
<td>change of 4-node representation</td>
<td>double red removed</td>
</tr>
<tr>
<td>recoloring</td>
<td>split</td>
<td>double red removed or propagated up</td>
</tr>
</tbody>
</table>

Deletion

<table>
<thead>
<tr>
<th>Red-black tree action</th>
<th>(2,4) tree action</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>restructuring</td>
<td>transfer</td>
<td>double black removed</td>
</tr>
<tr>
<td>recoloring</td>
<td>fusion</td>
<td>double black removed or propagated up</td>
</tr>
<tr>
<td>adjustment</td>
<td>change of 3-node representation</td>
<td>restructuring or recoloring follows</td>
</tr>
</tbody>
</table>
Demo

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html