Outline and Reading

- Multi-way search tree
 - Definition
 - Search
- (2,4) tree
 - Definition
 - Search
 - Insertion
 - Deletion
- Comparison of dictionary implementations
Multi-Way Search Tree

A multi-way search tree is an ordered tree such that

- Each internal node has at least two children and stores \(d - 1 \) key-element items \((k_i, o_i)\), where \(d \) is the number of children
- For a node with children \(v_1, v_2, \ldots, v_d \) storing keys \(k_1, k_2, \ldots, k_{d-1} \)
 - keys in the subtree of \(v_1 \) are less than \(k_1 \)
 - keys in the subtree of \(v_i \) are between \(k_{i-1} \) and \(k_i \) (\(i = 2, \ldots, d - 1 \))
 - keys in the subtree of \(v_d \) are greater than \(k_{d-1} \)
- The leaves store no items and serve as placeholders

![Diagram of a multi-way search tree]
Multi-Way Inorder Traversal

- We can extend the notion of inorder traversal from binary trees to multi-way search trees.
- Namely, we visit item \((k_i, o_i) \) of node \(v \) between the recursive traversals of the subtrees of \(v \) rooted at children \(v_i \) and \(v_i + 1 \).
- An inorder traversal of a multi-way search tree visits the keys in increasing order.
Multi-Way Searching

- Similar to search in a binary search tree
- Each internal node with children v_1, v_2, \ldots, v_d and keys $k_1, k_2, \ldots, k_{d-1}$
 - $k = k_i$ ($i = 1, \ldots, d-1$): the search terminates successfully
 - $k < k_1$: we continue the search in child v_1
 - $k_{i-1} < k < k_i$ ($i = 2, \ldots, d-1$): we continue the search in child v_i
 - $k > k_{d-1}$: we continue the search in child v_d
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30

```
          11  24
         /   \
        2    15  27  32
       /     \
      2  6  8  15  27  32
```

Example: search for 30
Multi-Way Searching

- Similar to search in a binary search tree
- A each internal node with children v_1, v_2, \ldots, v_d and keys $k_1, k_2, \ldots, k_{d-1}$
 - $k = k_i$ ($i = 1, \ldots, d - 1$): the search terminates successfully
 - $k < k_1$: we continue the search in child v_1
 - $k_{i-1} < k < k_i$ ($i = 2, \ldots, d - 1$): we continue the search in child v_i
 - $k > k_{d-1}$: we continue the search in child v_d
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30

```
   11  24
  /   \
2  6  8  15
      /   \
     27 32
```

Example: search for 30
Multi-Way Searching

- Similar to search in a binary search tree
- At each internal node with children v_1, v_2, \ldots, v_d and keys $k_1, k_2, \ldots, k_{d-1}$,
 - $k = k_i$ ($i = 1, \ldots, d - 1$): the search terminates successfully
 - $k < k_1$: we continue the search in child v_1
 - $k_{i-1} < k < k_i$ ($i = 2, \ldots, d - 1$): we continue the search in child v_i
 - $k > k_{d-1}$: we continue the search in child v_d
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30
(2,4) Tree

- A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties:
 - Node-Size Property: every internal node has at most four children
 - Depth Property: all the external nodes have the same depth
- Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node
Height of a (2,4) Tree

- As opposed to a binary tree, a (2,4) tree has internal nodes with 2, 3, and 4 children.
- What is the height of the tree of n items?
- What is the big-Oh of the height of the tree of n items?
Theorem: A (2,4) tree storing n items has height $O(\log n)$

Proof:

- Let h be the height of a (2,4) tree with n items.
- Since there are at least 2^i items at depth $i = 0, \ldots, h - 1$ and no items at depth h, we have
 \[n \geq 1 + 2 + 4 + \ldots + 2^{h-1} = 2^h - 1 \]
- Thus, $h \leq \log (n + 1)$
(2,4) Tree Operations

- **Search**
 - Depends on height of tree, thus searching in a (2,4) tree with \(n \) items takes \(O(\log n) \)

- **Insert**
 - Coming up next...

- **Delete**
 - Coming up next next...
Insertion

- How do you insert an item into an existing tree? Ideas?

Recall the (2,4) tree properties:
- **Node-Size Property**: every internal node has at most four children
- **Depth Property**: all the external nodes have the same depth
 - THIS IS CRUCIAL TO KEEP \(O(\log N)\) SEARCH TIME - WHY?

How do you maintain these properties? Ideas?
Insertion

Let’s start at the beginning
- Insert 27
Insertion

Let’s start at the beginning

- Insert 27
- Insert 35
Insertion

Let’s start at the beginning

- Insert 27
- Insert 35
- Insert 32
- Insert 30?
Insertion

Let’s start at the beginning

- Add 30 to the node?
 - Makes 5 children = overflow…

Node-size property is broken
Insertion

Let’s start at the beginning

- We make 30 a child of the node (27, 32, 35)?
 - External node at different depths...

Depth property is broken!
Another example: insert 30 into a larger tree

We insert the new item \((k=30, o)\) at the parent \(v\) of the leaf reached by searching for \(k\)

- We preserve the depth property but
- We cause an overflow (i.e., node \(v\) becomes a 5-node)
Insertion

What can we do?
Handling Overflows

We handle an overflow at a 5-node v with a split operation:

- let $v_1 \ldots v_5$ be the children of v and $k_1 \ldots k_4$ be the keys of v
- node v is replaced nodes v' and v''
 - v' is a 3-node with keys k_1 and k_2 and children $v_1 v_2 v_3$
 - v'' is a 2-node with key k_4 and children $v_4 v_5$
- key k_3 is inserted into the parent u of v (a new root may be created)

The overflow may propagate to the parent node u
Analysis of Insertion

Algorithm `insertItem(k, o)`

1. We search for key `k` to locate the insertion node `v`
2. We add the new item `(k, o)` at node `v`
3. while `overflow(v)`
 - if `isRoot(v)`
 - create a new empty root above `v`
 - `v ← split(v)`

Let `T` **be a (2,4) tree with** `n` **items**
- Tree `T` has `O(log n)` height
- Step 1 takes
 - `O(log n)` time because we visit `O(log n)` nodes
- Step 2 takes
 - `O(1)` time
- Step 3 takes
 - `O(log n)` time because each split takes `O(1)` time and we perform `O(log n)` splits

Thus, an insertion in a (2,4) tree takes
- `O(log n)` time
Deletion

- How do you delete an item?
- What problems can occur?
Deletion

- We reduce deletion of an item to the case where the item is at the node with leaf children.
- Otherwise, we replace the item with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter item.
- Example: to delete key 24, we replace it with 27 (inorder successor).

Example tree:
```
        10
       /  \
      15   24
     /    /  \
    2     12  18
   /  \
  8   12  18
```

After deletion:
```
        10
       /  \
      15   27
     /    /  \n    2     12  18
   /  \
  8   12  18
```

Example tree:
```
        27
       /  \  
      32   35
     /     /\  
    2     10  15
   /  \      /  \ 
  8   12     18   24
```

After deletion:
```
        27
       /  \  
      32   35
     /     /\  
    2     10  15
   /  \      /  \ 
  8   12     18   24
```
Deletion

What happens if I delete 12? 18?
Simply removing the node will break the depth property…
Underflow, Fusion, and Transfer

- Deleting an item from a node \(v \) may cause an underflow, where node \(v \) becomes a 1-node with one child and no keys.
- To handle an underflow at node \(v \) with parent \(u \), we consider two cases in the next slides.
Underflow and Fusion

Case 1: the adjacent siblings of v are 2-nodes

- Fusion operation: since there is "space" in the siblings, we merge v with an adjacent sibling w and move an item from u to the merged node v'
- After a fusion, the underflow may propagate to the parent u
Underflow and Transfer

- **Case 2:** an adjacent sibling w of v is a 3-node or a 4-node
 - **Transfer operation:**
 1. we move a child of w to v
 2. we move an item from u to v
 3. we move an item from w to u
 - **After a transfer, no underflow occurs**
Analysis of Deletion

Let \(T \) be a (2,4) tree with \(n \) items
- Tree \(T \) has \(O(\log n) \) height

In a deletion operation
- We visit \(O(\log n) \) nodes to locate the node from which to delete the item
- We handle an underflow with a series of \(O(\log n) \) fusions, followed by at most one transfer
- Each fusion and transfer takes \(O(1) \) time

Thus, deleting an item from a (2,4) tree takes \(O(\log n) \) time
Summary

Comparison of data structures and algorithms

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Search</th>
<th>Insert</th>
<th>Delete</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash Table</td>
<td>1 expected</td>
<td>1 expected</td>
<td>1 expected</td>
<td>no ordered dictionary methods, simple to implement</td>
</tr>
<tr>
<td>Skip List</td>
<td>log (n) high prob.</td>
<td>log (n) high prob.</td>
<td>log (n) high prob.</td>
<td>randomized insertion, simple to implement</td>
</tr>
<tr>
<td>(2,4) Tree</td>
<td>log (n) worst-case</td>
<td>log (n) worst-case</td>
<td>log (n) worst-case</td>
<td>complex to implement</td>
</tr>
</tbody>
</table>