Skip Lists
Outline and Reading

- What is a skip list
- Operations
 - Search
 - Insertion
 - Deletion
- Implementation
- Analysis
 - Space usage
 - Search and update times
What is a Skip List

A skip list for a set S of distinct (key, element) items is a series of lists S_0, S_1, \ldots, S_h such that:

- Each list S_i contains the special keys $+\infty$ and $-\infty$.
- List S_0 contains the keys of S in increasing order.
- Each list is a subsequence of the previous one, i.e.,
 \[S_0 \supseteq S_1 \supseteq \ldots \supseteq S_h \]
- List S_h contains only the two special keys.

\[S_3 \quad -\infty \quad +\infty \]
\[S_2 \quad -\infty \quad 31 \quad +\infty \]
\[S_1 \quad -\infty \quad 23 \quad 31 \quad 34 \quad 64 \quad +\infty \]
\[S_0 \quad -\infty \quad 12 \quad 23 \quad 26 \quad 31 \quad 34 \quad 44 \quad 56 \quad 64 \quad 78 \quad +\infty \]
Search

We search for a key x in a skip list as follows:

- We start at the first position of the top list.
- At the current position p, we compare x with $y \leftarrow \text{key}(after(p))$

 - $x = y$: we return $\text{element}(after(p))$
 - $x > y$: we “scan forward”
 - $x < y$: we “drop down”
- If we try to drop down past the bottom list, we return \textit{NO_SUCH_KEY}

Example: search for 78

\[S_0: -\infty \rightarrow 12 \rightarrow 23 \rightarrow 26 \rightarrow 31 \rightarrow 34 \rightarrow 44 \rightarrow 56 \rightarrow 64 \rightarrow 78 \rightarrow +\infty \]

\[S_1: -\infty \rightarrow 23 \rightarrow 31 \rightarrow 34 \rightarrow 44 \rightarrow 56 \rightarrow 64 \rightarrow 78 \rightarrow +\infty \]

\[S_2: -\infty \rightarrow 31 \rightarrow 34 \rightarrow 44 \rightarrow 56 \rightarrow 64 \rightarrow 78 \rightarrow +\infty \]

\[S_3: -\infty \rightarrow \infty \rightarrow 31 \rightarrow 34 \rightarrow 44 \rightarrow 56 \rightarrow 64 \rightarrow 78 \rightarrow +\infty \]
Randomized Algorithms

- A randomized algorithm performs coin tosses (i.e., uses random bits) to control its execution.
- It contains statements of the type
 \[b \leftarrow \text{random()} \]
 \[\text{if } b = 0 \]
 \[\text{do A } \ldots \]
 \[\text{else } \{ b = 1 \} \]
 \[\text{do B } \ldots \]
- Its running time depends on the outcomes of the coin tosses.

- We analyze the expected running time of a randomized algorithm under the following assumptions:
 - the coins are unbiased, and
 - the coin tosses are independent.
- The worst-case running time of a randomized algorithm is often large but has very low probability (e.g., it occurs when all the coin tosses give “heads”).
- We use a randomized algorithm to insert items into a skip list.
To insert an item \((x, o)\) into a skip list, we use a randomized algorithm:

- We repeatedly toss a coin until we get tails, and we denote with \(i\) the number of times the coin came up heads.
- If \(i \geq h\), we add to the skip list new lists \(S_{h+1}, \ldots, S_{i+1}\), each containing only the two special keys.
- We search for \(x\) in the skip list and find the positions \(p_0, p_1, \ldots, p_i\) of the items with largest key less than \(x\) in each list \(S_0, S_1, \ldots, S_i\).
- For \(j \leftarrow 0, \ldots, i\), we insert item \((x, o)\) into list \(S_j\) after position \(p_j\).

Example: Insert key 15, with \(i = 2\)

```plaintext

Insertion

- We repeatedly toss a coin until we get tails, and we denote with \(i\) the number of times the coin came up heads.
- If \(i \geq h\), we add to the skip list new lists \(S_{h+1}, \ldots, S_{i+1}\), each containing only the two special keys.
- We search for \(x\) in the skip list and find the positions \(p_0, p_1, \ldots, p_i\) of the items with largest key less than \(x\) in each list \(S_0, S_1, \ldots, S_i\).
- For \(j \leftarrow 0, \ldots, i\), we insert item \((x, o)\) into list \(S_j\) after position \(p_j\).

Example: Insert key 15, with \(i = 2\)

```
Deletion

To remove an item with key x from a skip list, we proceed as follows:

- We search for x in the skip list and find the positions p_0, p_1, \ldots, p_i of the items with key x, where position p_j is in list S_j.
- We remove positions p_0, p_1, \ldots, p_i from the lists S_0, S_1, \ldots, S_i.
- We remove all but one list containing only the two special keys.

Example: remove key 34
We can implement a skip list with quad-nodes.
A quad-node stores:
- item
- link to the node before
- link to the node after
- link to the node below
- link to the node after

Also, we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them.
Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm.

- We use the following two basic probabilistic facts:

 Fact 1: The probability of getting \(i \) consecutive heads when flipping a coin is \(1/2^i \).

 Fact 2: If each of \(n \) items is present in a set with probability \(p \), the expected size of the set is \(np \).

- Consider a skip list with \(n \) items.

 - By Fact 1, we insert an item in list \(S_i \) with probability \(1/2^i \).

 - By Fact 2, the expected size of list \(S_i \) is \(n/2^i \).

- The expected number of nodes used by the skip list is

\[
\sum_{i=0}^{h} \frac{n}{2^i} = n \sum_{i=0}^{h} \frac{1}{2^i} < 2n
\]

- Thus, the expected space usage of a skip list with \(n \) items is \(O(n) \).
Height

- The running time of the search an insertion algorithms is affected by the height h of the skip list.
- We show that with high probability, a skip list with n items has height $O(\log n)$.
- We use the following additional probabilistic fact:

 Fact 3: If each of n events has probability p, the probability that at least one event occurs is at most np.

Consider a skip list with n items:

- By Fact 1, we insert an item in list S_i with probability $\frac{1}{2^i}$.
- By Fact 3, the probability that list S_i has at least one item is at most $\frac{n}{2^i}$.

By picking $i = 3\log n$, we have that the probability that $S_{3\log n}$ has at least one item is at most:

$$\frac{n}{2^{3\log n}} = \frac{n}{n^3} = \frac{1}{n^2}$$

Thus a skip list with n items has height at most $3\log n$ with probability at least $1 - \frac{1}{n^2}$.

Search and Update Times

The search time in a skip list is proportional to

- the number of drop-down steps, plus
- the number of scan-forward steps

The drop-down steps are bounded by the height of the skip list and thus are $O(\log n)$ with high probability

To analyze the scan-forward steps, we use yet another probabilistic fact:

Fact 4: The expected number of coin tosses required in order to get tails is 2

When we scan forward in a list, the destination key does not belong to a higher list

- A scan-forward step is associated with a former coin toss that gave tails

By Fact 4, in each list the expected number of scan-forward steps is 2

Thus, the expected number of scan-forward steps is

- $O(\log n)$

We conclude that a search in a skip list takes $O(\log n)$ expected time

The analysis of insertion and deletion gives similar results
Summary

A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.

In a skip list with \(n \) items:
- The expected space used is \(O(n) \).
- The expected search, insertion and deletion time is \(O(\log n) \).

Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability.

Skip lists are fast and simple to implement in practice.