Priority Queues and Heaps
Priority Queue

ADT

- A priority queue stores a collection of items
- An item is a pair (key, element)
- Main methods of the Priority Queue ADT
 - `insertItem(k, o)` inserts an item with key k and element o
 - `removeMin()` removes the item with the smallest key
- Additional methods
 - `minKey(k, o)` returns, but does not remove, the smallest key of an item
 - `minElement()` returns, but does not remove, the element of an item with smallest key
 - `size()`, `isEmpty()`
- Applications:
 - Standby flyers
 - Auctions
 - Stock market
Total Order Relation

- Keys in a priority queue can be arbitrary objects on which an order is defined.
- Two distinct items in a priority queue can have the same key.

Mathematical concept of total order relation \leq

- **Reflexive** property:
 \[x \leq x \]

- **Antisymmetric** property:
 \[x \leq y \land y \leq x \Rightarrow x = y \]

- **Transitive** property:
 \[x \leq y \land y \leq z \Rightarrow x \leq z \]
Comparator ADT

- A *comparator* encapsulates the action of comparing two objects according to a given total order relation.
- A generic priority queue uses a comparator as a template argument, to define the comparison function ($<$, $=$, $>$).
- The comparator is external to the keys being compared. Thus, the same objects can be sorted in different ways by using different comparators.
- When the priority queue needs to compare two keys, it uses its comparator.
Using Comparators in C++

A comparator class overloads the "()" operator with a comparison function.

Example: Compare two points in the plane lexicographically.

class LexCompare {
public:
 int operator()(Point a, Point b) {
 if (a.x < b.x) return -1
 else if (a.x > b.x) return +1
 else if (a.y < b.y) return -1
 else if (a.y > b.y) return +1
 else return 0;
 }
};

To use the comparator, define an object of this type, and invoke it using its "()" operator:

Example of usage:

Point p(2.3, 4.5);
Point q(1.7, 7.3);
LexCompare lexCompare;

if (lexCompare(p, q) < 0)
 cout << "p less than q"
else if (lexCompare(p, q) == 0)
 cout << "p equals q"
else if (lexCompare(p, q) > 0)
 cout << "p greater than q";
Sorting with a Priority Queue

We can use a priority queue to sort a set of comparable elements

- Insert the elements one by one with a series of `insertItem(e, e)` operations
- Remove the elements in sorted order with a series of `removeMin()` operations

The running time of this sorting method depends on the priority queue implementation

Algorithm PQ-Sort(S, C)

Input sequence S, comparator C for the elements of S

Output sequence S sorted in increasing order according to C

$P \leftarrow$ priority queue with comparator C

while !S.isEmpty ()

 $e \leftarrow S$.remove (S.first ())
 P.insertItem(e, e)

while !P.isEmpty ()

 $e \leftarrow P$.minElement()
 P.removeMin()
 S.insertLast(e)
Sequence-based Priority Queue

Implementation with an unsorted list

Performance:
- \textbf{insertItem}
 - takes $O(1)$ time since we can insert the item at the beginning or end of the sequence
- \textbf{removeMin}, \textbf{minKey} and \textbf{minElement}
 - take $O(n)$ time since we have to traverse the entire sequence to find the smallest key

Implementation with a sorted list

Performance:
- \textbf{insertItem}
 - takes $O(n)$ time since we have to find the place where to insert the item
- \textbf{removeMin}, \textbf{minKey} and \textbf{minElement}
 - take $O(1)$ time since the smallest key is at the beginning of the sequence
Selection-Sort

Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence.

Running time of Selection-sort:
- Inserting the elements into the priority queue with n insertItem operations takes $O(n)$ time.
- Removing the elements in sorted order from the priority queue with n removeMin operations takes time proportional to $1 + 2 + ... + n$.

Selection-sort runs in $O(n^2)$ time.
Insertion-Sort

- Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence.

 1 2 3 4 5

Running time of Insertion-sort:
- Inserting the elements into the priority queue with \(n \) `insertItem` operations takes time proportional to \(1 + 2 + \ldots + n \).
- Removing the elements in sorted order from the priority queue with a series of \(n \) `removeMin` operations takes \(O(n) \) time.

- Insertion-sort runs in \(O(n^2) \) time.
What is a heap?

A heap is a binary tree storing keys at its internal nodes and satisfying the following properties:

- **Heap-Order:**
 - for every internal node v other than the root, $key(v) \geq key(parent(v))$

- **Complete Binary Tree:**
 - let h be the height of the heap
 - for $i = 0, \ldots, h - 1$, there are 2^i nodes of depth i
 - at depth $h - 1$, the internal nodes are to the left of the external nodes

- The last node of a heap is the rightmost internal node of depth $h - 1$
Theorem: A heap storing n keys has height $O(\log n)$

Proof: (we apply the complete binary tree property)

- Let h be the height of a heap storing n keys
- Since there are 2^i keys at depth $i = 0, \ldots, h-2$ and at least one key at depth $h-1$, we have $n \geq 1 + 2 + 4 + \ldots + 2^{h-2} + 1$
- Thus, $n \geq 2^{h-1}$, i.e., $h \leq \log n + 1$
Heaps and Priority Queues

- We can use a heap to implement a priority queue
- We store a (key, element) item at each internal node
- We keep track of the position of the last node
- For simplicity, we show only the keys in the pictures

[(9, Jeff) -> (5, Pat) -> (2, Sue) -> (6, Mark)]

(7, Anna)
Insertion into a Heap

- Method `insertItem` of the priority queue ADT corresponds to the insertion of a key k to the heap.
- The insertion algorithm consists of three steps:
 - Find the insertion node z (the new last node).
 - Store k at z and expand z into an internal node.
 - Restore the heap-order property (discussed next).
Upheap

- After the insertion of a new key k, the heap-order property may be violated.
- Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node.
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k.

Performance
- Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time.
Removal from a Heap

Method `removeMin` of the priority queue ADT corresponds to the removal of the root key from the heap.

The removal algorithm consists of three steps:

- Replace the root key with the key of the last node `w`.
- Compress `w` and its children into a leaf.
- Restore the heap-order property (discussed next).
Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated.
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root.
- Upheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k.
- Performance
 - Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time.
Example
Example
Example
Example
Example
Example
Accessing the Queue

- In a regular queue, you can explicitly keep
 - the head-index and tail-index, or
 - the head-index and the size

- In a priority queue, you can explicitly keep
 - the head-pointer (root) and the tail-pointer (last node), or
 - the head-pointer and the size
Question:

How do you update the last node ("tail") pointer or get it from the queue size?
Updating Last Node Pointer

- The insertion node can be found by traversing a path:
 - Go up until a left child or the root is reached
 - If a left child is reached, go to the right child
 - Go down left until a leaf is reached

- Similar algorithm for updating the last node after a removal

- **Performance:**
 - $O(\log n)$
Finding Last Node Pointer

The insertion node can be found by traversing a path without needing an explicit tail pointer:

- Start at the root and using the binary number equivalent of the new number of nodes
 - Assume the root to be the right-child of an imaginary parent
 - Starting with MSB, traverse using 0=left and 1=right
- Prevents the need to keep a last node pointer around
- Asymptotically same performance, but half the cost

Similar algorithm for updating the last node after a removal

Performance:

- $O(\log n)$
Examples
Heap-Sort

- Consider a priority queue with n items implemented by means of a heap
 - the space used is $O(n)$
 - methods insertItem and removeMin take time $O(\log n)$
 - methods size, isEmpty, minKey, and minElement take time $O(1)$

- Using a heap-based priority queue, we can sort a sequence of n elements in time $O(n \log n)$
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort
Heap-Sort

More explicitly, how much time does it take to construct a heap?

- n items, each requiring up to $\log n$ swaps during "down-heap" operations

How much time does it take to "destruct" a heap (or remove items in sorted order)?

- n items, each requiring up to $\log n$ swaps during "up-heap" operations

Thus Heap-Sort is

$\log n \cdot n + n \log n = O(n \log n)$

Heaps and Priority Queues
Heap Construction

Can you do better than $O(n \log n)$?

How?

Why do we care?

- We only want to find the few smallest keys among many items
- We want to quickly start “using the items” in sorted order but the sorting can continue while I start using the first items, e.g.: real-time OS, games, simulations, etc.
First: Merging Two Heaps

- We are given two two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heap-order property
Then: Bottom-up Heap Construction

- We can construct a heap storing \(n \) given keys using a bottom-up construction with \(\log n \) phases.

- In phase \(i \), pairs of heaps with \(2^i - 1 \) keys are merged into heaps with \(2^{i+1} - 1 \) keys.
Example

Goal: to create a heap of N elements

Assume $N = 2^H - 1$ for some integer H and thus the heap (tree) is “full”

In a first step, we construct $(N+1)/2$ basic heap structures
 - One key and two empty children pointers
Example
Example (contd.)

Heaps and Priority Queues

25
15
4
12
6
9
11
23
27
20
23
15
4
12
11
9
20
27
16
25
5
12
6
9
11
23
27
16
5
12
6
9
11
23
27
16
4
12
6
9
11
23
27
16
4
12
6
9
11
23
27
16
4
12
6
9
11
23
27
Example (contd.)

Heaps and Priority Queues
Analysis: What is the performance?

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path).
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is $O(n)$.
 - Or, similarly, each edge of the tree is visited once and since the total number of edges is $(2n-1)$, then $O(n)$.
- Thus, bottom-up heap construction runs in $O(n)$ time.
 - Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort.
Analysis: What is the performance?

Thus, we can start using the first results of sorting after $O(n)$ time and using $O(n)$ space.
- Groovy!
Analysis: Why is this important again?

Consider the Internet

- You have $N = 10^9$ pages you want to sort and know the top results as soon as possible
- Waiting $O(N^2) = 10^{18}$ before knowing the top results
 - is too long...
 - Even if you choose a very small time unit, e.g.:
 - you assume a 1-GigaHz computer to do 1-Giga operations per second, you will take 10^9 seconds, or 31 years!
- Waiting $O(N \log N) = 30 \times 10^9$
 - is doable, maybe it means 30 seconds
- Waiting $O(N) = 10^9$
 - is more doable, maybe meaning 1 second!!!
Vector-based Heap Implementation

- We can represent a heap with \(n \) keys by means of a vector of length \(n + 1 \).
- For the node at rank \(i \):
 - the left child is at rank \(2i \)
 - the right child is at rank \(2i + 1 \)
- Links between nodes are not explicitly stored.
- The leaves are not represented.
- Operation `insertItem` corresponds to inserting at rank \(n + 1 \).
- Operation `removeMin` corresponds to removing at rank \(n \).

Yields in-place heap-sort!
Let's look at this again

Consider the Internet

- We looked at sorting the pages
 - $O(N^2)$, $O(N\log N)$, $O(N)$ (for first keys of the sort and $O(N\log N)$ to complete it)

- How fast can we find any particular page we want in an initially unsorted set?
 - $O(N^2)$?
 - $O(N\log N)$?
 - $O(N)$?
 - $O(1)$? → It is possible! (kinda)
Coming next!