
Spatial Data Structures 
and Hierarchies

CS334 Spring 2022

Daniel G. Aliaga
Department of Computer Science

Purdue University



Spatial Data Structures

• Store geometric information

• Organize geometric information

• Permit fast access to/of geometric information

• Applications

– Heightfields

– Collision detection (core to *many* uses)

– Simulations (e.g., surgery, games)

– Rendering (e.g., need to render fast!)



Hierarchical Modeling

• Concept is old but fundamental

– “Hierarchical geometric models for visible surface 
algorithms”, James Clark - 1976



Hierarchical Modeling

• Trees and Scene Graphs



Hierarchical Modeling

• Trees and Scene Graphs



Hierarchical Modeling

• Trees and Scene Graphs



Bounding Volumes

• Problem:

– Suppose you need to intersect rays with a scene…

– Suppose you have a scene divided into objects…

• Solution: bottom-up

– Wrap complex objects into simple ones

• Boxes, spheres, other shapes…

– Organize into a tree



Bounding Sphere

• Simplest way to bound an object

• Good for small or round objects



Bounding Boxes

• Axis Aligned Vs Orientated

Axis Aligned

Cheaper

Orientated

More Expensive



Bounding Volume Hierarchy (BVH)

• How to building an axis aligned bounding box 
(AABB) BVH?

• How to intersect?

• Complexity? Problem cases?



AABB BVH

• Example construction

– Given M 2D points, use k-means clustering to 
determine clusters

– Then group nearby clusters (e.g., use Voronoi 
diagram or Delaunay triangulation)

– And iteratively form a tree from the bottom-up

– In each node, approximate the contained points 
using an axis-aligned bounding box
• e.g., box = [min of all contained pts, max of all contained pts]



Bounding Volume Hierarchy (BVH)

• How to building an oriented bounding box 
(OBB) BVH?

• How to intersect?

• Complexity? Problem cases? Advantages over 
axis-aligned?



OBB BVH

• Example construction

– Similar to AABB BVH but “fit” an oriented box to the points 
within each cluster/node of the tree

– Methods:
• Sample possible rotations and sizes in order to pick the best box

• Compute distance of points to a line and optimize the line 
equation parameters until finding the line that best approximates 
all points

• Then compute a box width – consider the benefit/cost of the box 
size 

– e.g., totally containing all points might make the box very large; could 
also choose to mostly contain the points – however, what does this 
mean with regards to operations using the BVH?



An Application of BVH:
Collision Detection

• Turn complex objects into bounded volumes 
for collision testing

• Fast, but not reliable

• Great initial test, but should be followed by 
another more precise test



An Application of BVH:
Collision Detection

• Intersect these!



Bounding Volume Hierarchy

• Enclose objects into BVs

• Check BV first



Bounding Volume Hierarchy

• Enclose objects into BVs

• Check BV first

• Decompose into two



Bounding Volume Hierarchy

• Enclose objects into BVs

• Check BV first

• Decompose into two

• Proceed hierarchically



Bounding Volume Hierarchy

• Enclose objects into BVs

• Check BV first

• Decompose into two

• Proceed hierarchically



 BVH is pre-computed for each object

Bounding Volume Hierarchy



Bounding Volume Hierarchy in 3D



Collision Detection

Two objects described by their 
precomputed BVHs

A

B C

D E F G

A

B C

D E F G



Collision Detection

AA

Search tree

A
A

pruning



Collision Detection

AA

CCCBBCBB

Search tree

A

A

A

B C

D E F G



Collision Detection

CCCBBCBB

AA

Search tree

pruning

A

B C

D E F G



Collision Detection

CCCBBCBB

AA

Search tree

GEGDFEFD

G D
If the pieces contained in G and D

overlap → collision

A

B C

D E F G



AABB



AABB

▪ Not invariant

▪ Efficient to test

▪ Not tight



OBB



▪ Invariant

▪ Less efficient to test

▪ Tight

OBB



Comparison

Sphere AABB OBB

Tightness - -- +

Testing + + o

Invariance yes no yes

No type of BV is optimal for all situations



Space Subdivision

• Binary tree / Quadtree / Octree

• k-D tree

• Binary Space Partitioning (BSP) Tree



Binary Tree

• A directed edge refers to the link from the parent to the child (the arrows 
in the picture of the tree).

• The root node of a tree is the node with no parents; there is at most one 
root node in a rooted tree.

• A leaf is a node that has no children.

• The depth of a node is the length of the path from the root to the node. 
The root node is at depth zero.

• The height of a tree is the depth of its furthest leaf. A tree with only a root 
node has a height of zero.

• Siblings are nodes that share the same parent node

Size = 9
Height = 3
Root node = 2



Binary Tree

• Operations

– Search

– Insert

– Delete



Quadtree

• Similar to binary-tree, but have 4 children per 
node

• Each node corresponds to one of four 
rectangular regions of the current quad



Quadtree

• Similar to binary-tree, but have 4 children per 
node

• Each node corresponds to one of four 
rectangular regions of the current quad



Quadtree

• Various types of quadtrees exist

• Questions/Applications:

– Is point P in the dataset?

– What points are near P?

– Given an image, in which area/pixel is P?

– What is the average feature value in an area A? 



Quadtree

• Point quadtree

– Partitions depend on the data

– The quad is divided using the previous point 
within it

– Point is stored in nodes



Quadtree

• Point quadtree

– Partitions depend on the data

– The quad is divided using the previous point 
within it

• Advantage

– Data dependent subdivision reduces 
(unnecessary) number of quads

• Disadvantage

– Quads do not tightly approximate region 
surrounding the point



Quadtree

• Matrix (MX) quadtree (or region quadtree)

– Location of partition lines independent of the data

– The occupied nodes are all subdivided until a tight 
fitting box

– Point is stored in leaf



Quadtree

• MX quadtree

– Location of partition lines independent of the data

– The occupied nodes are all subdivided until a tight 
fitting box

• Advantage

– Quads leaf nodes always tightly approximate 
region surrounding the point

– Shape of tree independent of insertion order

• Disadvantage

– Potentially lots of levels from root to a point



Quadtree

• Point Region (PR) quadtree

– Location of partition lines independent of the data

– The nodes are all subdivided until p or less points 
per node (e.g., p=1)



Quadtree

• PR quadtree

– Location of partition lines independent of the data

– The nodes are all subdivided until p or less points 
per node (e.g., p=1)

• Advantage

– Partition lines are known and paths from root to 
point is only as long as needs to be

• Disadvantage

– Quads do not tightly approximate region 
surrounding the point



Quadtree

• Comparison

Point QT MX QT PR QT



Demo

• http://donar.umiacs.umd.edu/quadtree/

http://donar.umiacs.umd.edu/quadtree/


Octree

• Analogous to Quadtree but extended to 3D

• Each node is divided into eight subboxes



Octree

• Analogous to Quadtree but extended to 3D

• Each node is divided into eight subboxes

• Similar, there are

– Point octrees

– MX octrees

– PR octrees



K-D tree

• Partition each dimension in a cyclical fashion

– Thus, can be applied to 2D, 3D, or higher 
dimensions

• Each node stores a next partitioned “half-
space” of data points (or of the data space)



k-D tree
• The first split (red) cuts the root cell (white) into 

two

• Each of which is then split (green) into two 
subcells

• Each of those four is split (blue) into two subcells

• The final eight called leaf cells

• The yellow spheres represent the tree vertices

The resulting kd-tree decomposition The resulting kd-tree

A 3-dimensional kd-tree



Demo

• http://donar.umiacs.umd.edu/quadtree/

http://donar.umiacs.umd.edu/quadtree/


Binary Space Partitioning (BSP)

• Similar to k-D tree but splitting lines/planes 
are not necessarily axis-aligned

• Can adapt better to data

• Was algorithm used for visibility sorting…



Binary Space Partitioning (BSP)

• Suitable for any number of dimensions

Separating planes are shown in black and objects in blue)

BSP trees



Demo

• More stuff at

– http://donar.umiacs.umd.edu/quadtree

• See

– H. Samet, Foundations of Multidimensional and 
Metric Data Structures, Morgan-Kaufmann, San 
Francisco, 2006

http://donar.umiacs.umd.edu/quadtree


Example Uses of 
Spatial Data Structures

• View Frustum Culling

• Ray Tracing

• Collision Detection

• and more…



View Frustum Culling

• Omit rendering geometry outside the view 
frustum

View

Frustum

Eyepoint



View Frustum Culling

and occlusion culling…



Hierarchical 
View Frustum Culling

• See board…



Ray Tracing: 
Octree (or Quadtree)

• See board…(construction, neighbor finding, etc)


