
Ray Tracing (Part I)

CS334 Spring 2022

Daniel G. Aliaga

Department of Computer Science

Purdue University

Ray Casting and Ray Tracing

• Ray Casting

– Arthur Appel, started around 1968…

• Ray Tracing

– Turner Whitted, started around 1980…

Ray Tracing

• Turner Whitted, Communications of the ACM, 23(6), 343-349, June 1980

• ABSTRACT
“To accurately render a two-dimensional image of a three-dimensional scene,
global illumination information that affects the intensity of each pixel of the image
must be known at the time the intensity is calculated. In a simplified form, this
information is stored in a tree of “rays” extending from the viewer to the first
surface encountered and from there to other surfaces and to the light sources. A
visible surface algorithm creates this tree for each pixel of the display and passes it
to the shader. The shader then traverses the tree to determine the intensity of the
light received by the viewer. Consideration of all of these factors allows the shader
to accurately simulate true reflection, shadows, and refraction, as well as the
effects simulated by conventional shaders. Anti-aliasing is included as an integral
part of the visibility calculations. Surfaces displayed include curved as well as
polygonal surfaces.”

Ray Tracing

• Turner Whitted, Communications of the ACM, 23(6), 343-349, June 1980

Ray Casting

• To “cast” a ray for each pixel into the scene and color
the ray based on which object it “hits”

– This can be interpreted as the inverse of the feed-forward
graphics pipeline which effectively “pushes” geometry
onto the screen

Ray Tracing

• In addition to ray-casting, rays can reflect off objects,
reflect, refract, identify objects in shadow, and
numerous other effects…

Ray Tracing

• In addition to ray-casting, rays can reflect off objects,
reflect, refract, identify objects in shadow, and
numerous other effects…

ray trace example using CUDA/GPU programming

Ray Tracing

• Fluid Animation:

– https://www.youtube.com/watch?v=3rlbnqayGZs

• Real-time

– https://www.youtube.com/watch?v=2ow7cbtzg1E

https://www.youtube.com/watch?v=3rlbnqayGZs
https://www.youtube.com/watch?v=3rlbnqayGZs
https://www.youtube.com/watch?v=3rlbnqayGZs
https://www.youtube.com/watch?v=3rlbnqayGZs
https://www.youtube.com/watch?v=2ow7cbtzg1E
https://www.youtube.com/watch?v=2ow7cbtzg1E
https://www.youtube.com/watch?v=2ow7cbtzg1E

Ray Tracers

• POVRay

– http://www.povray.org

• RayShade

– http://www-
graphics.stanford.edu/~cek/rayshade/rayshade.ht
ml

• NVIDIA OptiX

– https://developer.nvidia.com/optix

http://www.povray.org/
http://www-graphics.stanford.edu/~cek/rayshade/rayshade.html
http://www-graphics.stanford.edu/~cek/rayshade/rayshade.html
http://www-graphics.stanford.edu/~cek/rayshade/rayshade.html
http://www-graphics.stanford.edu/~cek/rayshade/rayshade.html
https://developer.nvidia.com/optix
https://developer.nvidia.com/optix

Basic Ray Tracing Algorithm

• Setup image plane

– Center-of-projection

– Field-of-view

• Define objects

– Functional descriptions
• E.g., sphere, box, f(x,y,z)=0

– Polygonal descriptions

• Foreach pixel…

Basic Ray Tracing Algorithm

Foreach pixel

 define ray from eye through pixel and into scene

 get intersection with scene

 trace reflected ray…

 trace refracted ray…

 trace to-light ray…

 combine resulting colors…

Ray tracing

• Ray tracing (intersection computations)

– Sphere, plane, polygon, box, quadric

• Reflections

• Refractions

• Shadows

(more on the board…)

Ray Object Intersections

• A ray is defined as
 R0 = [x0, y0, z0] - origin of ray

 Rd = [xd, yd, zd] - direction of ray

Then, a set of points on the ray are defined as

 R(t) = R0 + Rd * t where t > 0

If Rd is normalized, then t equals the distance of the
ray from origin in World Coordinates,

Slides: Vivek Puri

Ray Sphere Intersection

• Sphere is defined by its center (Sc = [xc, yc, zc]) and
radius Sr

Thus, the equation of sphere is

 (x-xc)
2 + (y-yc)

2 + (z-zc)
2 = Sr

2

Substitute equation of ray and solve quadratic eqn for t,

– If discriminant < 0 No intersection

– If discriminant ≥ 0 Intersection. Smaller t gives the
nearest intersection point

Slides: Vivek Puri

Ray Plane Intersection

• Plane is defined by Ax+By+Cz+D=0

 Substitute the equation for ray and solve for t,

 t = -(AX0 + BY0 + CZ0 + D) / (AXd + BYd + CZd)

 = -(Pn· R0 + D) / (Pn · Rd)

 where Pn is the plane normal of unit length

 If Pn · Rd = 0 Ray is parallel to the plane

 If Pn · Rd > 0 Normal of plane points away from the ray

 If t < 0 Ray intersects plane behind origin

 If t > 0 Substitute t in equation for intersection point

Slides: Vivek Puri

Ray Polygon Intersection

• Check whether the ray intersects the polygon
plane

• Calculate the point of intersection

• Check whether the point is within the
polygon. How?
– Cross products

– Shoot a ray from the point and count edges crossed, if odd
then inside

– or one of several other approaches

Slides: Vivek Puri

Ray Box Intersection

• Transform box vertices (Vi) to align with the
coordinate axes

• Solve for intersection with xmin and xmax
planes; similarly solve for Y and Z.

• Check for common interval or intersection

If, max (tmin) ≤ min (tmax)

Then, t0 = max (tmin)

 t1 = min (tmax)

Slides: Vivek Puri

Ray Quadric Intersection

• Class of quadrics (surfaces that can be defined by a
quadratic equation) include cylinders, cones, ellipsoids,
paraboloids, etc

• The general quadric surface equation is
 Ax2 + By2 + Cz2 + Dxy+ Exz + Fyz + Gx + Hy + Iz + J = 0

• Substitute the equation of ray, we get the form,
 Aq t

2 + Bq t + Cq = 0

• Solve for t using quadratic formula

Slides: Vivek Puri

Ray tracing

• Ray tracing (intersection computations)

• Reflections

• Refractions

• Shadows

(more on the board…)

Reflections

• Similar to what we saw for
shading/illumination

• Recall 𝜃𝑖 = 𝜃𝑟

• 𝑙𝑟 = 𝑙𝑖 − 2𝑛(𝑛 ∙ 𝑙𝑖)

n

Refraction (or Transmission)

• Need refraction indices:

𝑘1=outside object (e.g., air)

𝑘2=inside object (e.g., glass)

• Snell’s Law:
𝑘1 sin 𝜃𝑖 = 𝑘2sin(𝜃𝑡)

• After some rearrangement:
𝑙𝑡 = −𝑛𝑐𝑜𝑠 𝜃𝑡 + 𝑏𝑠𝑖𝑛 𝜃𝑡

 where 𝑏 = 𝑛 × (𝑛 × 𝑙𝑖)

n

