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Modeling Transformations

• Most popular transformations in graphics

– Translation

– Rotation

– Scale

– Projection

• In order to use a single matrix for all, we use 
homogeneous coordinates…
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And many more…
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Diffuse

(mostly)



Specular++



Environment Mapping



Subsurface Scatterring



Others

Ambient occlusion

Radiosity

Transparency



Others



Lighting and Shading

• Light sources
– Point light

• Models an omnidirectional light source (e.g., a bulb)

– Directional light

• Models an omnidirectional light source at infinity

– Spot light

• Models a point light with direction

• Light model
– Ambient light

– Diffuse reflection 

– Specular reflection
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Viewing Transformation
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Perspective Projection
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Projection Transformations

void glFrustum(GLdouble left, GLdouble right, GLdouble 

bottom, GLdouble top, GLdouble near, GLdouble far);



Projection Transformations

void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble 

near, GLdouble far); 



Projection Transformations

void glOrtho(GLdouble left, GLdouble right, GLdouble 

bottom, 

GLdouble top, GLdouble near, GLdouble far); 

void gluOrtho2D(GLdouble left, GLdouble right, 

GLdouble bottom, GLdouble top); 
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Scan Conversion/Rasterization

• Determine which fragments get generated

• Interpolate parameters (colors, textures, 
normals, etc.)



Scan Conversion/Rasterization

• Determine which fragments get generated

• Interpolate parameters (colors, textures, 
normals, etc.)



Scan Conversion/Rasterization

• Determine which fragments get generated

• Interpolate parameters (colors, textures, 
normals, etc.)

• How?



Scan Conversion/Rasterization

• Determine which fragments get generated

• Interpolate parameters (colors, textures, 
normals, etc.)

• Barycentric coords amongst many other ways…



Barycentric coordinates

p2

p1

p3q

𝑞 = 𝛼𝑝1 + 𝛽𝑝2 + 𝛾𝑝3

If [𝛼 + 𝛽 + 𝛾 = 1 𝑎𝑛𝑑 𝛼, 𝛽, 𝛾 ≥ 0],
then q inside triangle (𝑝1, 𝑝2, 𝑝3)

Can also write:
𝑞 = 𝛼𝑝1 + 𝛽𝑝2 + (1 − 𝛼 − 𝛽)𝑝3



Barycentric coordinates

p2

p1

p3q

How to solve for α and β in
𝑞 = 𝛼𝑝1 + 𝛽𝑝2 + 1 − 𝛼 − 𝛽 𝑝3?

Two equations, two unknowns: 

use 2x2 matrix inversion…
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Additional concept: 
Texture mapping

• Model surface-detail with images

– wrap object with photograph(s)

– graphics object itself is a simpler model but 
“looks” more complex
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Texture mapping

• Generic image to 
represent material

– e.g., tile pattern

bark

veneer

bricks
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Tiling

• Repeat pattern
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Tiling

• Repeat pattern
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Tiling

• Repeat pattern

• How can we 
improve?
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Tiling

• Repeat pattern

– reduce seems by 
mirroring

– How we can 
further improve?
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Tiling

• Repeat pattern

– reduce seems by 
mirroring

– reduce seems by 
choosing tile 
that covers one 
period of 
repeated 
texture
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Tiling
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Texture mapping limitations 
do exist…
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Bricks are similar not identical
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Solution?
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Solution: Texture synthesis…



53

Texture coordinates

• Mechanism for attaching the texture map to 
the surface modeled

– a pair of floats (s, t) for each triangle vertex

– corners of the image are (0, 0), (0, 1), (1, 1), and 
(1, 0)

– tiling indicated with tex. coords. > 1

– texels – color samples in texture maps
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P4(1, 1)
P3(0, 1)

Texture coordinates
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Texture mapping
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Texels: texture elements

P1’(u1, v1, s1, t1)

P2’(u2, v2, s2, t2)
P3’(u3, v3, s3, t3)

P’(u, v, s, t)
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Texture mapping
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Problem: how to 

compute the texture 

coordinates for an 

interior pixel?
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Texture mapping
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Solution: interpolate 

vertex texture coordinates



Parameter Interpolation

• Texture coordinates, colors, normals, etc.

• How?

– Again, use barycentric coordinates…
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Level of detail problem

aliasing anti-aliased

If curious, you can read more on this subject!


