
Graphics Pipeline:
Transformation,

Shading/Lighting, Projection,
Texturing, and more!

Spring 2022

Daniel G. Aliaga
Department of Computer Science

Purdue University

Computer Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

Computer Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

Modeling Transformations

• Most popular transformations in graphics

– Translation

– Rotation

– Scale

– Projection

• In order to use a single matrix for all, we use
homogeneous coordinates…

Modeling Transformations

Modeling Transformations

And many more…

Computer Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

Diffuse

(mostly)

Specular++

Environment Mapping

Subsurface Scatterring

Others

Ambient occlusion

Radiosity

Transparency

Others

Lighting and Shading

• Light sources
– Point light

• Models an omnidirectional light source (e.g., a bulb)

– Directional light

• Models an omnidirectional light source at infinity

– Spot light

• Models a point light with direction

• Light model
– Ambient light

– Diffuse reflection

– Specular reflection

Lighting and Shading

• Diffuse reflection

– Lambertian model

Lighting and Shading

• Diffuse reflection

– Lambertian model

Lighting and Shading

• Diffuse reflection

– Lambertian model

Lighting and Shading

• Specular reflection

– Phong model

Lighting and Shading

• Specular reflection

– Phong model

Lighting and Shading

• Specular reflection

– Phong model

Computer Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

Viewing Transformation































1

10

tR~

Z

Y

X

xc

)
~

(~ CXRxc 

RCXRxc 
~~

t

zyx RRRR 

3x3 rotation matrices

 Tzyx tttt 

translation vector
World-to-camera matrix M

Computer Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

Computer Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

f Z
x = f X

Z

y = f Y

Z

Perspective projection

(X, Y, Z)
f

image plane
eye/viewpoint

(x, y)

z

optical axis

Z

Y
y?

y = Y
&

Perspective Projection






















































1
0100

000

000

Z

Y

X

f

f

Z

fY

fX










ZfY

ZfX

/

/










y

x

Projection Transformations

void glFrustum(GLdouble left, GLdouble right, GLdouble

bottom, GLdouble top, GLdouble near, GLdouble far);

Projection Transformations

void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble

near, GLdouble far);

Projection Transformations

void glOrtho(GLdouble left, GLdouble right, GLdouble

bottom,

GLdouble top, GLdouble near, GLdouble far);

void gluOrtho2D(GLdouble left, GLdouble right,

GLdouble bottom, GLdouble top);

Computer Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

Scan Conversion/Rasterization

• Determine which fragments get generated

• Interpolate parameters (colors, textures,
normals, etc.)

Scan Conversion/Rasterization

• Determine which fragments get generated

• Interpolate parameters (colors, textures,
normals, etc.)

Scan Conversion/Rasterization

• Determine which fragments get generated

• Interpolate parameters (colors, textures,
normals, etc.)

• How?

Scan Conversion/Rasterization

• Determine which fragments get generated

• Interpolate parameters (colors, textures,
normals, etc.)

• Barycentric coords amongst many other ways…

Barycentric coordinates

p2

p1

p3q

𝑞 = 𝛼𝑝1 + 𝛽𝑝2 + 𝛾𝑝3

If [𝛼 + 𝛽 + 𝛾 = 1 𝑎𝑛𝑑 𝛼, 𝛽, 𝛾 ≥ 0],
then q inside triangle (𝑝1, 𝑝2, 𝑝3)

Can also write:
𝑞 = 𝛼𝑝1 + 𝛽𝑝2 + (1 − 𝛼 − 𝛽)𝑝3

Barycentric coordinates

p2

p1

p3q

How to solve for α and β in
𝑞 = 𝛼𝑝1 + 𝛽𝑝2 + 1 − 𝛼 − 𝛽 𝑝3?

Two equations, two unknowns:

use 2x2 matrix inversion…

37

Additional concept:
Texture mapping

• Model surface-detail with images

– wrap object with photograph(s)

– graphics object itself is a simpler model but
“looks” more complex

38

Texture mapping

• Model surface-detail with images

– wrap object with photograph(s)

– graphics object itself is a simpler model but
“looks” more complex

39

Texture mapping

• Generic image to
represent material

– e.g., tile pattern

bark

veneer

bricks

40

Tiling

• Repeat pattern

41

Tiling

• Repeat pattern

42

Tiling

• Repeat pattern

• How can we
improve?

43

Tiling

• Repeat pattern

– reduce seems by
mirroring

44

Tiling

• Repeat pattern

– reduce seems by
mirroring

45

Tiling

• Repeat pattern

– reduce seems by
mirroring

46

Tiling

• Repeat pattern

– reduce seems by
mirroring

– How we can
further improve?

47

Tiling

• Repeat pattern

– reduce seems by
mirroring

– reduce seems by
choosing tile
that covers one
period of
repeated
texture

48

Tiling

49

Texture mapping limitations
do exist…

50

Bricks are similar not identical

51

Solution?

52

Solution: Texture synthesis…

53

Texture coordinates

• Mechanism for attaching the texture map to
the surface modeled

– a pair of floats (s, t) for each triangle vertex

– corners of the image are (0, 0), (0, 1), (1, 1), and
(1, 0)

– tiling indicated with tex. coords. > 1

– texels – color samples in texture maps

54

x

y

z

O

P2(0, 0)

P1(1, 0)

P4(1, 1)
P3(0, 1)

Texture coordinates

55

Texture mapping

C

c

a

b

P1’

P2(0, 0)

P2’

P3’

P1(1, 0)

P4(1, 1)

P3(0, 1)

x

y

z

O

56

Texels: texture elements

P1’(u1, v1, s1, t1)

P2’(u2, v2, s2, t2)
P3’(u3, v3, s3, t3)

P’(u, v, s, t)

57

Texture mapping

C

c

a

b

P1’

P2(s2, t2)

P2’

P3’

P1(s1, t1)

P3(s3, t3)

P (s, t)

P’

x

y

z

O

Problem: how to

compute the texture

coordinates for an

interior pixel?

58

Texture mapping

C

c

a

b

P1’

P2(s2, t2)

P2’

P3’

P1(s1, t1)

P3(s3, t3)

P (s, t)

P’

x

y

z

O

Solution: interpolate

vertex texture coordinates

Parameter Interpolation

• Texture coordinates, colors, normals, etc.

• How?

– Again, use barycentric coordinates…

60

Level of detail problem

aliasing anti-aliased

If curious, you can read more on this subject!

