Procedural Modeling

CS334 Spring 2022

Daniel G. Aliaga
Department of Computer Science
Purdue University

Procedural Modeling

* Apply algorithms for producing objects and
scenes

* The rules may either be embedded into the
algorithm, configurable by parameters, or
externally provided

Examples

Examples

Examples

PLE |4.18 UPDATE - NEW MAP

Procedural Modeling

Fractals
Terrains
Image-synthesis
— Perlin Noise

— Clouds

Plants
Cities
And procedures in general...

Linear Fractals

* Definition: a shape is repeated in different
orientations/scales -- a never-ending pattern.

e Consider a simple line fractal

— Split a line segment, randomize the height of the midpoint
by some number in the [-r,r] range

— Repeat and randomize by [-r/2,r/2]
— Continue until a desired number of steps, randomizing by

half as much each step /

—

——

&

Koch Snowflake

ApS
A B

Demo

e http://nolandc.com/sandbox/fractals/

http://nolandc.com/sandbox/fractals/

Non-linear Fractals

 Example: Mandelbrot Set
— Iterations of “z,,.; = z2 + C” starting at z, = ¢,

— https://www.youtube.com/watch?v=pCpLWbHVN
hk

https://www.youtube.com/watch?v=pCpLWbHVNhk

Fractals and Terrains

* A similar process can be applied to squares in the xz plane
(Diamond-Square Algorithm):

— At each step, an xz square is subdivided into 4 squares, and the y
component of each new point is randomized

— By repeating this process recursively, we can generate a mountain

landscape

0—0—0—0—0 & 0009 e O o O e T—C‘)_T_O—T
“o <‘> O—O0—0 (‘> "‘ ?‘ o Sy o} “\:O:‘l_q o ‘,:O: o) O+O+O
CL <‘> Q—O—0 Q <‘> S0 00 q%<> ——O0—9 +-o%~o-+
i) a‘ﬁ OO0 0 o‘ o) \i\’r:)\ Q O—0—0—0—0 0~—+—*o-—if~o
c‘) <‘w O—0—0 ‘/o‘ ‘\ RN A S AN l—o-—l—,})—l

Porfoem darmand sep Padormaquro Rap

Terrains @

* A similar process can be applied to squares in the xz
plane

— At each step, an xz square is subdivided into 4 squares, and
the y component of each new point is randomized

— By repeating this process recursively, we can generate a
mountain landscape

Image Synthesis

* Procedurally generate an image (pixels)

ldea: Perlin Noise

* Procedurally generate noise
— http://jslk.com/demo/543

e See other slides

http://js1k.com/demo/543

City Modeling

* Procedural Modeling of Cities

(more on this later...)

Plant Modeling

e The Algorithmic Beauty of Plants

../../grammars/abop.pdf

Background: Chomsky Hierarchy

Type 0 grammars

— Unrestricted, recognized by Turing machine

Type 1 grammars

— Context-sensitive grammars
Type 2 grammars

— Context-free grammars

Type 3 grammars

— Regular grammars (e.g., regular expressions)

4

Lindenmayer system (or L-system)

A context-free or context-sensitive grammar

All rules are applied in “every iteration” before
jumping to the next level/iteration

Can be deterministic or non-deterministic

L-system

Variables: a
Constants: +, - (rotations of + or — 90 degrees)
Initial string (axiom): s=a

Rules: a —» a+a-a-a+a

Context-Free) L-system for Plants "¢

a b o .
n=5,4=25.7° n=5,5=20° §—4,0722,5
; ¥ F —+FF-[-F+F+F]+

F—F[+FIF[-FIF F —F[+F]F [-F1[F] [+F-F-F]

:
"
S

d e f

n=7,6=20° n=7,6=25.7° n=5,4=22.5°

X X X

X —=F[+X]F[-X]+X X—F[+X] [-X]FX X—F-[[X]+X]+F[+FX]-X
F —FF F—FF F—FF

Figure 1.24: Examples of plant-like structures generated by bracketed OL-
systems. L-systems (a), (b) and (c) are edge-rewriting, while (d), (e) and
(f) are node-rewriting.

&

FF]F[-FIF
[+F|F
—FIF

L-system for Plants (stochastic)

Figure 1.27: Stochastic branching structures

¥ £ 1Q0

n=>5, =18°

w : plant

p1 : plant — internode + [plant + flower] — — /

[— — leaf | internode [+ + leaf | —

[plant flower | + + plant flower . 1 9.]
po : internode — F seg [// & & leaf | [// A A leaf | F seg Figure 1.28: Flower field
p3 . seg — seg F seg

ps: leaf — [{ +f—fi—f+ | +f—ff—f}]
5 1 flower — [& & & pedicel © / wedge //// wedge ////
wedge //// wedge //// wedge]
ps : pedicel — FF
7 wedge = [AF]|[{&&& & —f+f| —f4+f}]

Figure 1.26: A plant generated by an L-system

Recent Result

* Growing Demo (Houdini)

— https://www.youtube.com/watch?v=-
e39SktwmkU

* SIGGRAPH Asia 2020
— https://www.youtube.com/watch?v=MU9E7xJzVGs

https://www.youtube.com/watch?v=-e39SktwmkU
https://www.youtube.com/watch?v=MU9E7xJzVGs

&

* |s used to generate geometric models from a
set of shapes and rules

Shape Grammar

[lustration by Peter Murray. "the Artchitecture of the Italian Renaissance”. Shocken Books Inc. 1963, Pp.96.

Shape Grammar

../../grammars/shape-grammars.pdf

Shape Grammar

rule

DERIVATION

Shape Grammar

Il

OTHER DESIGNS IN THE LANGUAGE

Exercise: let’s make some art!

 What is a shape grammar
that makes this?

172
PU

O

&

Exercise: let’s make some art!

e Consult with your neighbor(s)

* What is the shape grammar that makes the art
of the previous slide?

e Gol

Shape Grammar

n—

e e by

.:.u..;,ru.-\\w;w ..,...\\.. £ ||\r_m|.\\
P NG)
[N, S
i~

=

="

lce-ray grammar

=8 a s s
- Rt
A L RS K

Mughul garden grammar

o V- IEEERT
S\ JELLEET
FO9998%
§9%4994
94498
REREL
AEERE
4998

-
G
=
=
(G
. -
O
()
O
S
<
7

e Style: Mediterranean

Cellular Automata

A cellular automata (CA) is a spatial lattice of N cells, each of which is one of
k states at time t.

Each cell follows the same simple rule for updating its state.

The cell's state s at time t+1 depends on its own state and the states of
some number of neighbouring cells at t.

For one-dimensional CAs, the neighbourhood of a cell consists of the cell

itself and r neighbours on either side. Hence, k and r are the parameters of
the CA.

CAs are often described as discrete dynamical systems with the capability to
model various kinds of natural discrete or continuous dynamical systems

Types of Neighborhoods

Many more
neighborhood
technigues exist!

von Neumann Moare Extended Moore
neighbourhood M eighbourhood N eig hbourhood

Classes of cellular automata (Wolfram)

Class 1. after a finite number of time steps, the CA tends to
achieve a unique state from nearly all possible starting conditions
(limit points)

Class 2: the CA creates patterns that repeat periodically or are
stable (limit cycles) — probably equivalent to a regular
grammar/finite state automaton

Class 3: from nearly all starting conditions, the CA leads to
aperiodic-chaotic patterns, where the statistical properties of these
patterns are almost identical (after a sufficient period of time) to the
starting patterns (self-similar fractal curves) — computes ‘irregular
problems’

Class 4: after a finite number of steps, the CA usually dies, but
there are a few stable (periodic) patterns possible (e.g. Game of
Life) - Class 4 CA are believed to be capable of universal
computation

John Conway’s Game of Life

e 2D cellular automata system.

* Each cell has 8 neighbors - 4 adjacent
orthogonally, 4 adjacent diagonally.

* This is the Moore Neighborhood.

John Conway’s Game of Life

A live cell with 2 or 3 live neighbors survives to the
next round.

A live cell with 4 or more neighbors dies of
overpopulation.

A live cell with 1 or 0 neighbors dies of isolation.

An empty cell with exactly 3 neighbors becomes a
live cell in the next round.

Is it alive?

e http://www.bitstorm.org/gameoflife/

 Compare it to the definitions...

http://www.bitstorm.org/gameoflife/

Cellular Automata

* Used in computer graphics:

— Cellular Texturing

|

../../grammars/cell-texs.pdf

Urban Procedural Modeling

* Seminal paper:

— “Procedural Modeling of Cities”, Parish and
Mueller, SIGGRAPH 2001

Figure 18. Somewhere in a virtual Manhattan.

https://dl.acm.org/doi/pdf/10.1145/383259.383292

Split Grammars

Instant Architecture

Peter Wonka™' Michael Wimmer® Frangois Sillion* William Ribarsky*

“Georgia Institute of Technology

"Vienna University of Technology ~ *INRIA

=
, =
- L
L=
LM =
~= =
ol a =
=l l Ar'd:;
i ==
i |“ J-;.J 5’__’::.,,—.'—‘
: g =
_‘if"| L
[’ £ h = >
I g |
+
fam

Figure 1: Left: This image shows several buildings generated with split grammars, a modeling tool introduced in this paper. Right: The
terminal shapes of the grammar are rendered as little boxes. A scene of this complexity can be automatically generated within a few seconds.

START » ||l r| E|E

W | P WIN

Figure 6: This figure shows the result of the derivation of the gram-
mar in Figure 5.

WIN | 3 KS

Figure 5: The rules for a simple example split grammar. The white
areas (which contain symbols) represent the non-terminal shapes,
colored elements are the terminal shapes of the split grammar. The
start symbol is split into 4 facade elements, which are further split
into a window element, a keystone element and some wall elements
elc.

Split Grammars

Door Balcony Band
| |
i HE

. -

Cornice

.
.

.
-
.
-
.
-
.
‘ 0
-
-
p— .
L

|

S

!
I

!

FACADE_CONTROL ::- DOOR_PATTERN, RANDOM_PATTERN,
RANDOM_PATTERN, RANDOM_PATTERN
RANDOM_PATTERN ::- CORNICE | BAND | BALCONY
| QUOIN | PILASTER
DOOR_PATTERN ::- DOOR | GARAGE
DOOR ::- <[0,1], door, 1> | <[0,2], door, 1>

| <[0,MAX], door, 1>

CGA Shape Grammar

* P. Mdller, P. Wonka, S. Haegler, A. Ulmer, L.
Van Gool: Procedural modeling of buildings
SIGGRAPH 2006

5333

Basic Shapes

Rules and Operations

* T(x,y,z) = translate by [x y z]
* S(a,b,c) =scale by [a b (]

* Context (like [] in L-systems) =

1: A % P=(01016)
/
[T(0,0,6) S(8,10,18) I(”"cube”)]

T(6,0,0) S(7,13,18).1("cube”) T(0,0,16) S(8,15,8)
I(“cylinder”) P=(6,0,0)

P=(r 16)

Subdivision @

I: fac ~+ Subdiv("Y",3.5,0.3.3.3.3){ floor | ledge | floor | floor | floor }

% B A A B }floor 3.0m

Bl [Al [A B }floor 3.0m

B| [A] |(A] |B }floor 3.0m
} ledge 30cm
Bl [Al [A }floor 3.5m

PRIORITY I:
1: lot ~ S(1r.building _height 1r)
Subdiv("Z" Scope.sz*rand(0.3,0.5).1r){ facades | sidewings }

2: sidewings ~
Xa I I I p e S Subdiv("X",Scope.sx*rand(0.2,0.6),1r){ sidewing | £ }

Subdiv("X", Ir.Scope.sx*rand(0.2,0.6)){ € | sidewing }
3: sidewing
~ S(Ir.1r,Scope.sz*rand(0.4.1.0)) facades : 0.5
~ S(1r,Scope.sy*rand(0.2,0.9).Scope.sz*rand(0.4,1.0))
facades : 0.3
~£:0.2
4: facades ~ Comp("sidefaces”){ facade }

Figure 14: Stochastic variations of building mass models generated
with only four rules (starting with the building lot as axiom).

PRIORITY 2:
5: facade : Shape.visible("Street”) == (0 ~»
Subdiv("Y" ground floor_height \rtopfloor_height)
{ groundfloor | floors | topfloors } fireescape

6: groundfloor ~» Subdiv("X". 1r.entrance width,1r){ groundtiles
E Xa m p I e S entrance SnapLines("Y” "entrancesnap™) | groundtiles }

PRIORITY 3:

7: facade ~» floors

8: floors ~» Repeal("YS™. floor height){ floor Snap("XZ") }

9: floor ~» Repeat("XS" " tile_widrh){ tile Snap("Y" "tilesnap™) }

15: wall : Shape.visible("Street”) ~ I("frontwall.obj™)
PRIORITY 4:
16: fireescape ~+ Subdiv("XS".1r,2%tile_widrh,Tr."tilesnap™)
{ epsilon | escapestairs | £ }
17: escapestairs ~ S(Ir.lr, fireescape depth)
T(0,0.-fireescape _de pth) Subdiv("YS",ground floor height 1r)
{ £ | Repeat("YS", floor_height){ I("fireescape.obj”) } }

W

S hwnun

NI uEan

g
qmmui

o
gy W o

Figure 15: A procedurally generated building modeled with snap
lines. Note the alignment of important lines and planes in the con-
struction.

Urban Procedural Modeling

e Cities

 Buildings

* CityEngine
— CityEngine

— https://www.youtube.com/watch?v=xJCIIE9pulk

— (for Unreal:
https://www.youtube.com/watch?v=faOdiVcxRG4)

../../grammars/proc-mod-cities.pdf
../../grammars/proc-mod-bldgs.pdf
http://www.esri.com/software/cityengine
https://www.youtube.com/watch?v=xJCIIE9pulk
https://www.youtube.com/watch?v=faOdiVcxRG4

Videos and more

Procedural Modeling of Cities
— http://www.youtube.com/watch?v=khrWonALQjJE

Procedural Modeling of Buildings
— http://www.youtube.com/watch?v=iDsSrMkW1uc

Procedural Modeling of Structurally Sound Masonry
Buildings
— http://www.youtube.com/watch?v=zXBAthLSxSQ

Image-based Procedural Modeling of Facades
— http://www.youtube.com/watch?v=SncibzYy0Ob4

Image-based Modeling

— Facades: http://www.youtube.com/watch?v=amD6 i3MVZM

http://www.youtube.com/watch?v=khrWonALQiE
http://www.youtube.com/watch?v=iDsSrMkW1uc
http://www.youtube.com/watch?v=zXBAthLSxSQ
http://www.youtube.com/watch?v=SncibzYy0b4
http://www.youtube.com/watch?v=amD6_i3MVZM

