

Image/View Morphing and Warping

CS334

Daniel G. Aliaga
Department of Computer Science
Purdue University

Motivation – Rendering from Images

- Given
 - left image
 - right image
- Create intermediate images
 - simulates camera movement

Related Work

- Panoramas (e.g., QuicktimeVR, etc)
 - user can look in any direction at few given locations but camera translations are *not* allowed...

Topics

- Image morphing (2D)
- View morphing (2D+)
- Image warping (3D)

Topics

- Image morphing (2D)
- View morphing (2D+)
- Image warping (3D)

Identify correspondences between input/output image

 Produce a sequence of images that allow a smooth transition from the input image to the output image

- 1. Correspondences
- 2. Linear interpolation

$$P_k = (1 - \frac{k}{n})P_0 + \frac{k}{n}P_n$$

Image morphing is not shape preserving

Topics

- Image morphing (2D)
- View morphing (2D+)
- Image warping (3D)

View Morphing

View Morphing

- Shape preserving morph
- Three step algorithm
 - Prewarp first and last images to parallel views
 - Image morph between prewarped images
 - Postwarp to interpolated view

Step 1: prewarp to parallel views

Parallel views

- same image plane
- image plane parallel to segment connecting the two centers of projection

Prewarp

- compute parallel views I_{0p}, I_{np}
- rotate I₀ and I_n to parallel views
- prewarp correspondence is $(P_0, P_n) \rightarrow (P_{op}, P_{np})$

Step 2: morph parallel images

- Shape preserving
- Use prewarped correspondences
- Interpolate C_k from C₀ C_n

PUR

Step 3: postwarp image

- Postwarp morphed image
 - create intermediate view
 - C_k is known
 - interpolate view direction and tilt
 - rotate morphed image to intermediate view

 View morphing is shape preserving

View Morphing Examples

• Using computer vision/stereo reconstruction techniques

Image Transformations

• Intuitively, how do you compute the matrix M by which to transform P_{θ} to $P_{\theta p}$?

PUR

Image Transformations

 A geometric relationship between input (u,v) and output pixels (x,y)

– Forward mapping:

$$(x,y) = (X(u,v), Y(u,v))$$

– Inverse mapping:

$$(u,v) = (U(x,y), V(x,y))$$

General matrix form is

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

and operates in the "homogeneous coordinate system".

Matrix form is

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

and accommodates translations, rotations, scale, and shear.

How many unknowns? How to create matrix?

Affine Transformations

 Transformation can be inferred from correspondences; e.g.,

$$\begin{bmatrix} u_i \\ v_i \\ w_i \end{bmatrix} \iff \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}$$

Given ≥3 correspondences can solve for T

Perspective/Projective Transformations

Matrix form is

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

and it accommodates foreshortening of distant line and convergence of lines to a vanishing point;

also, straight lines are maintained but not their mutual angular relationships, and

only parallel lines parallel to the projection plane remain parallel

Perspective/Projective Transformation

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- How many unknowns?
- How many correspondences are needed?

Direct Linear Transform

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

• Set w = 1 and z = 1, then have

$$\alpha \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Divide line 1 and 2 by 3
- Rearrange terms to form...

Example

Example

"Image Stitching"

A colloquial term for the same thing...

See blackboard...

$$\alpha(a_{11}u + a_{12}v + a_{13}) = x$$

$$\alpha(a_{21}u + a_{22}v + a_{23}) = y$$

$$\alpha(a_{31}u + a_{32}v + a_{33}) = 1$$

Divide 1st and 2nd line by 3rd line:

$$(a_{11}u + a_{12}v + a_{13}) = x(a_{31}u + a_{32}v + a_{33})$$

$$(a_{21}u + a_{22}v + a_{23}) = y(a_{31}u + a_{32}v + a_{33})$$

Rearrange terms:

$$a_{11}u + a_{12}v + a_{13} - a_{31}xu - a_{32}yv - a_{33}x = 0$$

$$a_{21}u + a_{22}v + a_{23} - a_{31}xu - a_{32}yv - a_{33}y = 0$$

PUR

See blackboard...

$$a_{11}u + a_{12}v + a_{13} - a_{31}xu - a_{32}yv - a_{33}x = 0$$

$$a_{21}u + a_{22}v + a_{23} - a_{31}xu - a_{32}yv - a_{33}y = 0$$

Assume
$$a_{33}=1$$
,
$$a_{11}u+a_{12}v+a_{13}-a_{31}xu-a_{32}yv=x$$

$$a_{21}u+a_{22}v+a_{23}-a_{31}xu-a_{32}yv=y$$

Setup for 4+ points, yields 8 equations for 8 unknowns...

Perspective/Projective Transformations

Solve Direct Linear Transform (DLT):

$$A = b$$

where A is the vector of unknown coefficients a_{ii}

Topics

- Image morphing (2D)
- View morphing (2D+)
- Image warping (3D)

- Goal: "warp" the pixels of the image so that they appear in the correct place for a new viewpoint
- Advantage:
 - Don't need a geometric model of the object/environment
 - Can be done in time proportional to screen size and (mostly) independent of object/environment complexity
- Disadvantage:
 - Limited resolution
 - Excessive warping reveals several visual artifacts (see examples)

$$P = \begin{bmatrix} \mathbf{u}_{x} & \mathbf{v}_{x} & \mathbf{o}_{x} \\ \mathbf{u}_{y} & \mathbf{v}_{y} & \mathbf{o}_{y} \\ \mathbf{u}_{z} & \mathbf{v}_{z} & \mathbf{o}_{z} \end{bmatrix}$$

$$\dot{X} = \dot{C} + t P \vec{x}$$

Some pictures courtesy of SIGGRAPH '99 course notes (Leonard McMillan)

$$\begin{split} \dot{C}_2 + t_2 P_2 \vec{x}_2 &= \dot{C}_1 + t_1 P_1 \vec{x}_1 \\ t_2 P_2 \vec{x}_2 &= \dot{C}_1 - \dot{C}_2 + t_1 P_1 \vec{x}_1 \\ t_2 \vec{x}_2 &= P_2^{-1} \left(\dot{C}_1 - \dot{C}_2 \right) + t_1 P_2^{-1} P_1 \vec{x}_1 \\ t_2 \vec{x}_2 &= P_2^{-1} \left(\dot{C}_1 - \dot{C}_2 \right) + P_2^{-1} P_1 \vec{x}_1 \\ \vec{x}_2 &= \frac{1}{t_1} P_2^{-1} \left(\dot{C}_1 - \dot{C}_2 \right) + P_2^{-1} P_1 \vec{x}_1 \\ \vec{x}_2 &= \frac{1}{t_1} P_2^{-1} \left(\dot{C}_1 - \dot{C}_2 \right) + \underbrace{P_2^{-1} P_1}_{H_{21}} \vec{x}_1 \end{split}$$

McMillan & Bishop Warping Equation:

$$x_2 = \delta(x_1) P_2^{-1} (c_1 - c_2) + P_2^{-1} P_1 x_1$$

Move pixels based on distance to eye

~Texture mapping

 Per-pixel distance values are used to warp pixels to their correct location for the current eye position

 Images enhanced with per-pixel depth [McMillan95]

$$u_{2} = \frac{w_{11} + w_{12} \cdot u_{1} + w_{13} \cdot v_{1} + w_{14} \cdot \delta(u_{1}, v_{1})}{w_{31} + w_{32} \cdot u_{1} + w_{33} \cdot v_{1} + w_{34} \cdot \delta(u_{1}, v_{1})}$$

$$v_{2} = \frac{w_{21} + w_{22} \cdot u_{1} + w_{23} \cdot v_{1} + w_{24} \cdot \delta(u_{1}, v_{1})}{w_{31} + w_{32} \cdot u_{1} + w_{33} \cdot v_{1} + w_{34} \cdot \delta(u_{1}, v_{1})}$$

3D Image Warping Example

3D Image Warping Example

- DeltaSphere
 - Lars Nyland et al.

3D Image Warping Example

3D Image Warping Example

3D Image Warping Example

3D Image Warping Example

 Disocclusions (or exposure events) occur when unsampled surfaces become visible...

What can we do?

Disocclusions

• Bilinear patches: fill in the areas

What else?

Rendering Order

√ The warping equation determines where points go...

... but that is not sufficient

Occlusion Compatible Rendering Order

- Epipolar geometry
- Project the new viewpoint onto the original image and divide the image into 1, 2 or 4 "sheets"

Occlusion Compatible Rendering Order

 A raster scan of each sheet produces a back-to-front ordering of warped pixels

Splatting

- One pixel in the source image does not necessarily project to one pixel in the destination image
 - e.g., if you are walking towards something, the sample might get larger...
- A solution: estimate shape and size of footprint of warped samples
 - expensive to do accurately
 - square/rectangular approximations can be done quickly (3x3 or 5x5 splats)
 - occlusion-compatible rendering will take care of oversized splats
 - BUT large splats can make the image seem blocky/low-res

More Examples Using the DeltaSphere

• Lars Nyland et al.

- 300° x 300° panorama
- this is the reflected light

- 300° x 300° panorama
- this is the range light

planar re-projection

Courtesy 3rd Tech Inc.

Courtesy 3rd Tech Inc.

Complete Jeep model

