Image/View Morphing and Warping

CS334

Daniel G. Aliaga
Department of Computer Science
Purdue University

Motivation - Rendering from Images

- Given
- left image
- right image
- Create
intermediate images
- simulates camera movement

Related Work

- Panoramas (e.g., QuicktimeVR, etc)
- user can look in any direction at few given locations but camera translations are not allowed...

Topics

- Image morphing (2D)
- View morphing (2D+)
- Image warping (3D)

Topics

- Image morphing (2D)
- View morphing (2D+)
- Image warping (3D)

Image Morphing

Image Morphing

- Identify correspondences between input/output image
- Produce a sequence of images that allow a smooth transition from the input image to the output image

Image Morphing

1. Correspondences

Image Morphing

1. Correspondences

2. Linear
interpolation

$$
P_{k}=\left(1-\frac{k}{n}\right) P_{0}+\frac{k}{n} P_{n}
$$

Image Morphing

Image Morphing

Image morphing is not shape preserving

Topics

- Image morphing (2D)
- View morphing (2D+)
- Image warping (3D)

View Morphing

View Morphing

- Shape preserving morph
- Three step algorithm
- Prewarp first and last images to parallel views
- Image morph between prewarped images
- Postwarp to interpolated view

Step 1: prewarp to parallel views

- Parallel views
- same image plane
- image plane parallel to segment connecting the two centers of projection
- Prewarp
- compute parallel views $I_{0 p}, I_{n p}$
- rotate I_{0} and I_{n} to parallel views
- prewarp correspondence is $\left(P_{0}, P_{n}\right)->\left(P_{o p}, P_{n p}\right)$

Step 2: morph parallel images

- Shape preserving
- Use prewarped correspondences
- Interpolate C_{k} from $\mathrm{C}_{0} \mathrm{C}_{\mathrm{n}}$

Step 3: postwarp image

- Postwarp morphed image
- create intermediate view
- C_{k} is known
- interpolate view direction and tilt
- rotate morphed image to intermediate view

View morphing

View morphing

- View morphing is shape preserving

View Morphing Examples

- Using computer vision/stereo reconstruction techniques

Image Transformations

- Intuitively, how do you compute the matrix M by which to transform P_{0} to $P_{0 p}$?

Image Transformations

- A geometric relationship between input (u,v) and output pixels (x, y)
- Forward mapping:

$$
(x, y)=(X(u, v), Y(u, v))
$$

- Inverse mapping:

$$
(u, v)=(U(x, y), V(x, y))
$$

Image Transformations

- General matrix form is

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

and operates in the "homogeneous coordinate system".

Affine Transformations

- Matrix form is

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

and accommodates translations, rotations, scale, and shear.

- How many unknowns? How to create matrix?

Affine Transformations

- Transformation can be inferred from correspondences; e.g.,

$$
\left[\begin{array}{c}
u_{i} \\
v_{i} \\
w_{i}
\end{array}\right] \Leftrightarrow\left[\begin{array}{l}
x_{i} \\
y_{i} \\
z_{i}
\end{array}\right]
$$

- Given ≥ 3 correspondences can solve for T
- Matrix form is

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

and it accommodates foreshortening of distant line and convergence of lines to a vanishing point; also, straight lines are maintained but not their mutual angular relationships, and only parallel lines parallel to the projection plane remain parallel

Perspective/Projective Transformationsin

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

- How many unknowns?
- How many correspondences are needed?

Direct Linear Transform

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & 1
\end{array}\right]\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]
$$

- Set $w=1$ and $z=1$, then have

$$
\alpha\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Divide line 1 and 2 by 3
- Rearrange terms to form...

Example

Example

"Image Stitching"

- A colloquial term for the same thing...

$$
\begin{aligned}
& \text { See blackboard... } \\
& \alpha\left(a_{11} u+a_{12} v+a_{13}\right)=x \\
& \alpha\left(a_{21} u+a_{22} v+a_{23}\right)=y \\
& \alpha\left(a_{31} u+a_{32} v+a_{33}\right)=1
\end{aligned}
$$

Divide $1^{\text {st }}$ and $2^{\text {nd }}$ line by $3^{\text {rd }}$ line:
$\left(a_{11} u+a_{12} v+a_{13}\right)=x\left(a_{31} u+a_{32} v+a_{33}\right)$
$\left(a_{21} u+a_{22} v+a_{23}\right)=y\left(a_{31} u+a_{32} v+a_{33}\right)$

Rearrange terms:

$$
\begin{aligned}
& a_{11} u+a_{12} v+a_{13}-a_{31} x u-a_{32} y v-a_{33} x=0 \\
& a_{21} u+a_{22} v+a_{23}-a_{31} x u-a_{32} y v-a_{33} y=0
\end{aligned}
$$

See blackboard...

$$
\begin{aligned}
& a_{11} u+a_{12} v+a_{13}-a_{31} x u-a_{32} y v-a_{33} x=0 \\
& a_{21} u+a_{22} v+a_{23}-a_{31} x u-a_{32} y v-a_{33} y=0
\end{aligned}
$$

Assume $a_{33}=1$,

$$
\begin{aligned}
& a_{11} u+a_{12} v+a_{13}-a_{31} x u-a_{32} y v=x \\
& a_{21} u+a_{22} v+a_{23}-a_{31} x u-a_{32} y v=y
\end{aligned}
$$

Setup for $4+$ points, yields 8 equations for 8 unknowns...

Perspective/Projective Transformations

- Solve Direct Linear Transform (DLT):

$$
\left(\begin{array}{lllllll}
u_{0} & v_{0} & 1 & 0 & 0 & 0 & -u_{0} x_{0}-v_{0} x_{0} \\
u_{1} & v_{1} & 1 & 0 & 0 & 0 & -u_{1} x_{1}-v_{1} x_{1} \\
u_{2} & v_{2} & 1 & 0 & 0 & 0 & -u_{2} x_{2}-v_{2} x_{2} \\
u_{3} & v_{3} & 1 & 0 & 0 & 0 & -u_{3} x_{3}-v_{3} x_{3} \\
0 & 0 & 0 & u_{0} & v_{0} & 1 & -u_{0} y_{0}-v_{0} y_{0} \\
0 & 0 & 0 & u_{1} & v_{1} & 1 & -u_{1} y_{1}-v_{1} y_{1} \\
0 & 0 & 0 & u_{2} & v_{2} & 1 & -u_{2} y_{2}-v_{2} y_{2} \\
0 & 0 & 0 & u_{3} & v_{3} & 1 & -u_{3} y_{3}-v_{3} y_{3}
\end{array}\right) A=b \quad \begin{gathered}
\\
\text { where } A \text { is the vector of } \\
\text { unknown coefficients } a_{i j}
\end{gathered}
$$

Topics

- Image morphing (2D)
- View morphing (2D+)
- Image warping (3D)

3D Image Warping

- Goal: "warp" the pixels of the image so that they appear in the correct place for a new viewpoint
- Advantage:
- Don't need a geometric model of the object/environment
- Can be done in time proportional to screen size and (mostly) independent of object/environment complexity
- Disadvantage:
- Limited resolution
- Excessive warping reveals several visual artifacts (see examples)

3D Image Warping Equations

$$
\begin{gathered}
P=\left[\begin{array}{l}
u_{z} v_{x} \sigma_{x} \\
u_{z} v_{y} o_{y} \\
u_{z} v_{z} \sigma_{z}
\end{array}\right] \\
\dot{X}=\dot{C}+t P \vec{x}
\end{gathered}
$$

Some pictures courtesy of SIGGRAPH '99 course notes
(Leonard McMillan)

3D Image Warping Equations

$$
\begin{gathered}
\dot{C}_{2}+t_{2} P_{2} \vec{x}_{2}=\dot{C}_{1}+t_{1} P_{1} \vec{x}_{1} \\
t_{2} P_{2} \vec{x}_{2}=\dot{C}_{1}-C_{2}+t_{1} P_{1} \vec{x}_{1} \\
t_{2} \vec{x}_{2}=P_{2}^{-1}\left(\dot{C}_{1}-\dot{C}_{2}\right)+t_{1} P_{2}^{-1} P_{1} \vec{x}_{1} \\
t_{t_{1}} \vec{x}_{2}=\frac{1}{t_{1}} P_{2}^{-1}\left(C_{1}-C_{2}\right)+P_{2}^{-1} P_{1} \vec{x}_{1} \\
\vec{x}_{2} \doteq \underbrace{\frac{1}{4}}_{\overparen{\delta}} \underbrace{-1}_{2}\left(\dot{C}_{1}-\dot{C}_{2}\right)
\end{gathered}+\underbrace{P_{2}^{-1} P_{1} \vec{x}_{1}}_{H_{21}} .
$$

3D Image Warping Equations

McMillan \& Bishop Warping Equation:

$$
X_{2}=\underbrace{P_{2}^{-1} P_{1} X_{1}}_{\substack{\delta\left(X_{1}\right) P_{2}^{-1}\left(C_{1}-C_{2}\right) \\
\begin{array}{l}
\text { Move pixels based on } \\
\text { distance to eye }
\end{array}}}
$$

- Per-pixel distance values are used to warp pixels to their correct location for the current eye position

3D Image Warping Equations

- Images enhanced with per-pixel depth [McMillan95]

3D Image Warping Equations

$$
\begin{aligned}
& \dot{P}=\dot{C}_{1}+\left(\bar{c}_{1}+u_{1} \bar{a}_{1}+v_{1} \bar{b}_{1}\right) w_{1} \\
& \dot{P}=\dot{C}_{2}+\left(\bar{c}_{2}+u_{2} \bar{a}_{2}+v_{2} \bar{b}_{2}\right) w_{2}
\end{aligned}
$$

3D Image Warping Equations

$$
\begin{aligned}
& u_{2}=\frac{w_{11}+w_{12} \cdot u_{1}+w_{13} \cdot v_{1}+w_{14} \cdot \delta\left(u_{1}, v_{1}\right)}{w_{31}+w_{32} \cdot u_{1}+w_{33} \cdot v_{1}+w_{34} \cdot \delta\left(u_{1}, v_{1}\right)} \\
& v_{2}=\frac{w_{21}+w_{22} \cdot u_{1}+w_{23} \cdot v_{1}+w_{24} \cdot \delta\left(u_{1}, v_{1}\right)}{w_{31}+w_{32} \cdot u_{1}+w_{33} \cdot v_{1}+w_{34} \cdot \delta\left(u_{1}, v_{1}\right)}
\end{aligned}
$$

3D Image Warping Example

3D Image Warping Example

- DeltaSphere
- Lars Nyland et al.

3D Image Warping Example

3D Image
Warping Example

3D Image Warping Example

3D Image
Warping Example

Disocclusions

- Disocclusions (or exposure events) occur when unsampled surfaces become visible...

What can we do?

Disocclusions

- Bilinear patches: fill in the areas

What else?

Rendering Order

\checkmark The warping equation determines where points go...

... but that is not suffigient

Occlusion Compatible Rendering Order

- Epipolar geometry
- Project the new viewpoint onto the original image and divide the image into 1, 2 or 4 "sheets"

Occlusion Compatible Rendering Order

- A raster scan of each sheet produces a back-to-front ordering of warped pixels

Splatting

- One pixel in the source image does not necessarily project to one pixel in the destination image
- e.g., if you are walking towards something, the sample might get larger...
- A solution: estimate shape and size of footprint of warped samples
- expensive to do accurately
- square/rectangular approximations can be done quickly (3×3 or 5×5 splats)
- occlusion-compatible rendering will take care of oversized splats
- BUT large splats can make the image seem blocky/low-res

More Examples Using the DeltaSpher

- Lars Nyland et al.

Complete Jeep model

