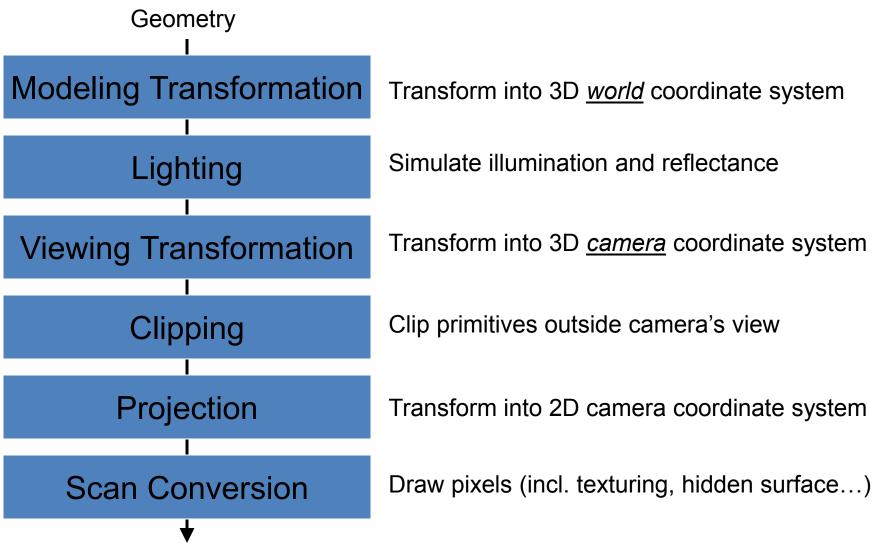


The Way of the GPU

(based on GPGPU SIGGRAPH Course)


CS334 Spring 2022

Daniel G. Aliaga
Department of Computer Science
Purdue University

(this is really from 20 years ago...)

Computer Graphics Pipeline

Image

Today, we have GPUs...

(GPU = graphical processing unit)

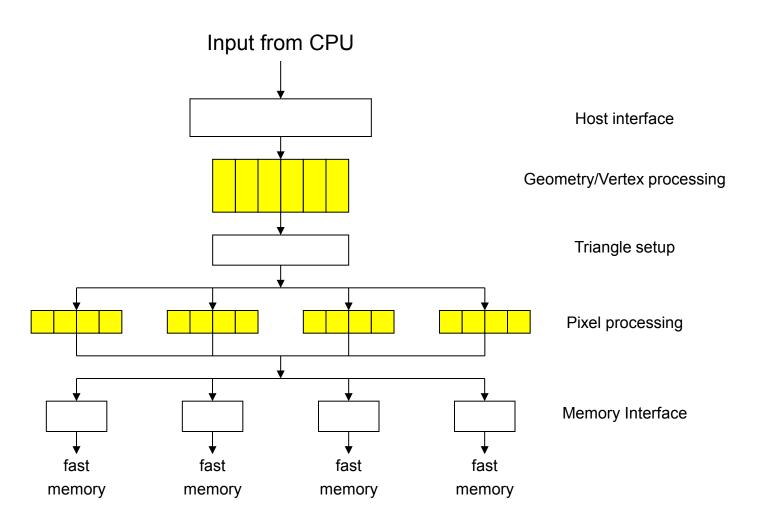
Motivation: Computational Power

Why are GPUs fast?

- Arithmetic intensity: the specialized nature of GPUs makes it easier to use additional transistors for computation not cache
- Economics: multi-billion dollar video game market is a pressure cooker that drives innovation

Motivation: Flexible and Precise

- Modern GPUs are deeply programmable
 - Programmable pixel, vertex, video engines
 - Solidifying high-level language support
- Modern GPUs support high precision
 - 32 bit floating point throughout the pipeline
 - High enough for many (not all) applications


The Problem: Difficult To Use

- GPUs designed for & driven by video games
 - Programming model unusual
 - Programming idioms tied to computer graphics
 - Programming environment tightly constrained
- Underlying architectures are:
 - Inherently parallel
 - Rapidly evolving (even in basic feature set!)
 - Largely secret
- Can't simply "port" CPU code!

Diagram of a Modern GPU

nVIDIA GPU

GTX 3090 Founder's Edition

- 10496 (CUDA) cores @ 1.7GHz (i.e., mini processors)
- 936 GB/sec (memory bandwidth)
- 36 TFLOPS (shader)
- 24 GB video memory
- 7680x4320 pixels
- 350W power
- 91C max GPU temp
- **\$1500-\$3000**

nVIDIA GPU

- GeForce 256 (from 1999)
 - 120 MHz
 - 4.8 GB/sec (memory bandwidth)
 - 32 MB memory
 - **\$100**

Before...

- SGI InfiniteReality (inside Onyx) (1995)
 - 2-4 raster boards (i.e., boards used in parallel)
 - 0.8 GB/sec (memory bandwidth)
 - 0.000640 TFLOPS
 - 2560x2048 pixels
 - ?? power
 - ?? max GPU temp
 - **\$390,000**

Before

- SGI Personal IRIS 4D (1985)
 - 0.00000940 TFLOPS
 - **\$68000**

Before

- IBM PC 5150 (~1985)
 - 0.000004.77 GHz
 - 16-640 KB
 - ~200W power

ALU's

Modern GPU has more ALU's

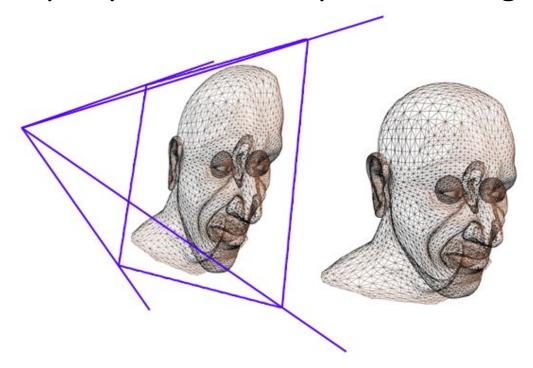
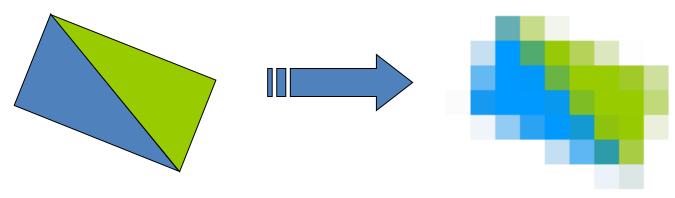


Figure 1-2. The GPU Devotes More Transistors to Data Processing

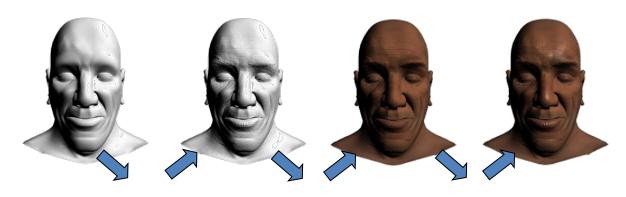
GPU Pipeline: Transform

- Vertex/Geometry processor (multiple in parallel)
 - Transform from "world space" to "image space"
 - Compute per-primitive and per-vertex lighting



GPU Pipeline: Rasterize

(typically not programmable)


- Rasterizer
 - Convert geometric rep. (vertex) to image rep. (fragment)
 - Fragment = image fragment
 - Pixel + associated data: color, depth, stencil, etc.
 - Interpolate per-vertex quantities across pixels

GPU Pipeline: Shade

- Fragment processors (multiple in parallel)
 - Compute a color for each pixel
 - Optionally read colors from textures (images)

GPU Programming Languages

- Many options!
 - A while ago: "Renderman"
 - cG (from NVIDIA)
 - GLSL (GL shading Language)
 - CUDA (more general that graphics)...

 Lets focus first on the concept, later on the language specifics...

GLSL Demo

http://glslsandbox.com/

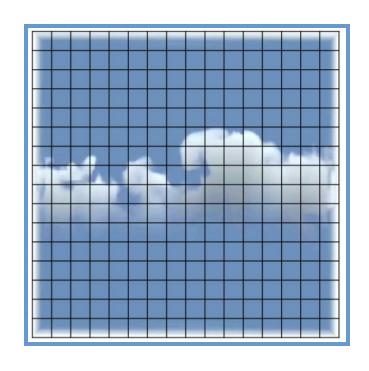
(backup:

https://www.youtube.com/watch?v=9ETfgTD6L2I

https://www.youtube.com/watch?v=8gHx7nMCVp4

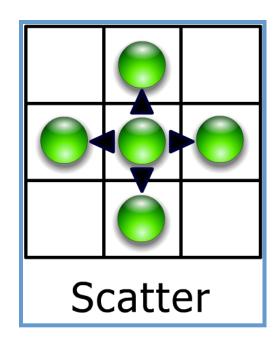
https://www.youtube.com/watch?v=t2yPfenzkII

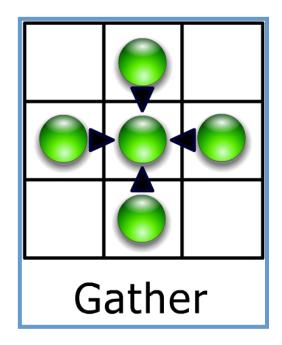
https://www.youtube.com/watch?v=M FsjL9j0HY)


Mapping Parallel Computational Concepts to GPUs

- GPUs are designed for graphics
 - Highly parallel tasks
- GPUs process independent vertices & fragments
 - Temporary registers are zeroed
 - No shared or static data
 - No read-modify-write buffers
- Data-parallel processing
 - GPUs architecture is ALU-heavy
 - Multiple vertex & pixel pipelines, multiple ALUs per pipe
 - Hide memory latency (with more computation)

Example: Simulation Grid


- Common GPGPU computation style
 - Textures represent computational grids = streams
- Many computations map to grids
 - Matrix algebra
 - Image & Volume processing
 - Physically-based simulation
 - Global Illumination
 - ray tracing, photon mapping, radiosity
- Non-grid streams can be mapped to grids



e.g.: Scatter vs. Gather

- Grid communication
 - Grid cells share information

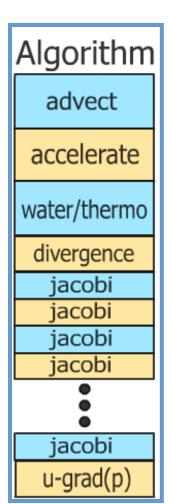
Vertex Processor

- Fully programmable (SIMD / MIMD)
- Processes 4-vectors (RGBA / XYZW)
- Capable of scatter but not gather
 - Can change the location of current vertex
 - Cannot read info from other vertices
 - Can only read a small constant memory
- Latest GPUs: Vertex Texture Fetch
 - Random access memory for vertices
 - ≈Gather (But not from the vertex stream itself)

Fragment Processor

- Fully programmable (SIMD)
- Processes 4-component vectors (RGBA / XYZW)
- Random access memory read (textures)
- Capable of gather but not scatter
 - RAM read (texture fetch), but no RAM write
 - Output address fixed to a specific pixel
- Typically more useful than vertex processor
 - More fragment pipelines than vertex pipelines
 - Direct output (fragment processor is at end of pipeline)

GPU Simulation Overview



A Simulation:

- Its algorithm steps are fragment programs
 - Called Computational kernels
- Current state is stored in textures
- Feedback via "render to texture"

Question:

– How do we invoke computation?

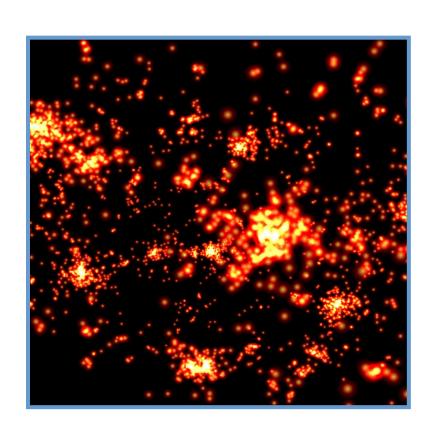
Invoking Computation

- Must invoke computation at each pixel
 - Just draw geometry!
 - Most common GPGPU invocation is a full-screen quad
- Other Useful Analogies
 - Rasterization = Kernel Invocation
 - Texture Coordinates = Computational Domain
 - Vertex Coordinates = Computational Range

Typical "Grid" Computation

Initialize "view" (so that pixels:texels::1:1)

```
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, 1, 0, 1, 0, 1);
glViewport(0, 0, outTexResX, outTexResY);
```

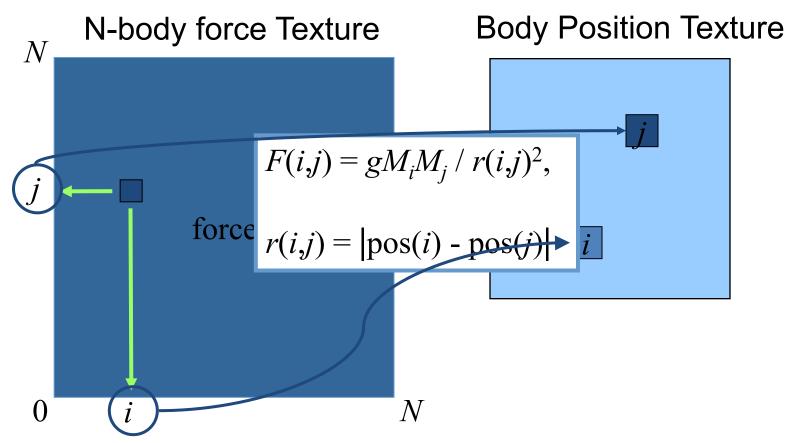

- For each algorithm step:
 - Activate render-to-texture
 - Setup input textures, fragment program
 - Draw a full-screen quad (1x1)

PUR

Example: N-Body Simulation

- Brute force ☺
- N = 8192 bodies
- N² gravity computations

- 64M force comps. / frame
- ~25 flops per force
- 10.5 fps



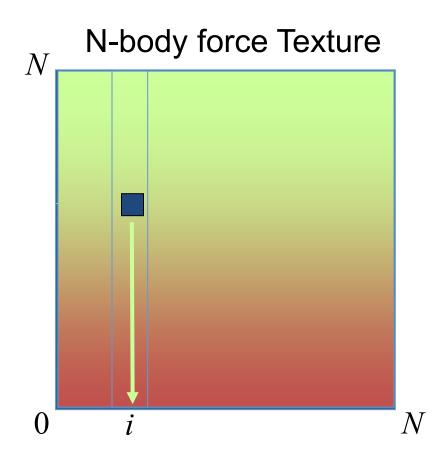
17+ GFLOPs sustained in this example

Computing Gravitational Forces

- Each body attracts all other bodies
 - -N bodies, so N^2 forces
- Draw into an NxN buffer
 - Pixel (i,j) computes force between bodies i and j
 - Very simple fragment program
 - More than N=2048 bodies is tricky
 - Why?

Computing Gravitational Forces

Force is proportional to the inverse square of the distance between bodies

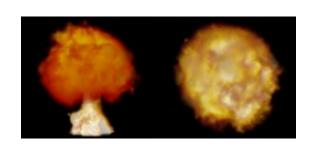

Computing Gravitational Forces

```
float4 force(float2 ij : WPOS,
     uniform sampler2D pos) : COLOR0
  // Pos texture is 2D, not 1D, so we need to
  // convert body index into 2D coords for pos tex
  float4 iCoords = getBodyCoords(ij);
  float4 iPosMass = texture2D(pos, iCoords.xy);
  float4 jPosMass = texture2D(pos, iCoords.zw);
  float3 dir = iPos.xyz - jPos.xyz;
  float r2 = dot(dir, dir);
  dir = normalize(dir);
  return dir * g * iPosMass.w * jPosMass.w / r2;
```

PUR

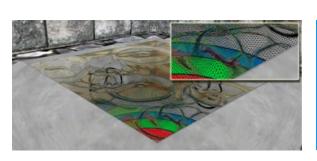
Computing Total Force

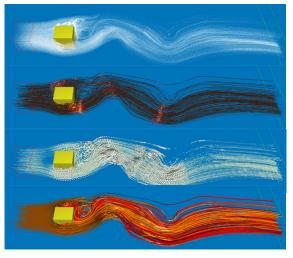
- Have: array of (i, j) forces
- Need: total force on each particle i
 - Sum of each column of the force array
- Can do all N columns in parallel



This is called a Parallel Reduction

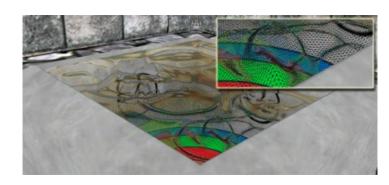
Geometry processing on GPUs


so far: GPGPU limited to texture output



new APIs allow geometry generation on GPU

Examples



3D Smoke & Fire

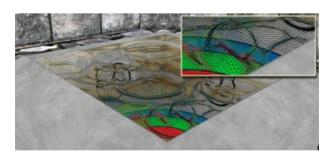
Water Simulation

3D Water Surfaces

Examples

Fluid Simulation

Water Simulation



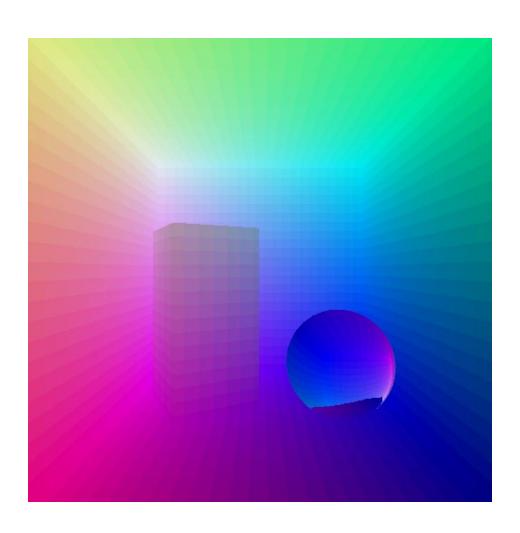
3D Smoke & Fire

3D Water Surfaces

Point Rendering

High Level Shading Languages

- Cg, HLSL, & OpenGL Shading Language
 - Cg:
 - http://www.nvidia.com/cg
 - HLSL:
 - http://msdn.microsoft.com/library/default.asp?url=/library/enus/directx9_c/directx/graphics/reference/highlevellanguageshade rs.asp
 - OpenGL Shading Language:
 - http://www.3dlabs.com/support/developer/ogl2/whitepapers/ind ex.html


'printf' Debugging

- MOV suspect register to output
 - Comment out anything else writing to output
 - Scale and bias as needed
- Recompile
- Display/readback frame buffer
- Check values
- Repeat until error is (hopefully) found

