

Global Illumination

CS334

Daniel G. Aliaga Department of Computer Science Purdue University

- Light sources
 - Point light
 - Models an omnidirectional light source (e.g., a bulb)
 - Directional light
 - Models an omnidirectional light source at infinity
 - Spot light
 - Models a point light with direction
- Light model
 - Ambient light
 - Diffuse reflection
 - Specular reflection

- Diffuse reflection
 - Lambertian model

- Specular reflection
 - Phong model

• Well....there is much more

For example...

- Reflection -> Bidirectional Reflectance Distribution Functions (BRDF)
- Diffuse, Specular -> Diffuse Interreflection, Specular Interreflection
- Color bleeding
- Transparency, Refraction
- Scattering
 - Subsurface scattering
 - Through participating media
- And more!

Illumination Models

- So far, you considered mostly local (direct) illumination
 - Light directly from light sources to surface
 - No shadows (actually is a global effect)
- Global (indirect) illumination: multiple bounces of light
 - Hard and soft shadows
 - Reflections/refractions (you kinda saw already)
 - Diffuse and specular interreflections

Welcome to Global Illumination

- *Direct illumination + indirect illumination;* e.g.
 - Direct = reflections, refractions, shadows, …
 - Indirect = diffuse and specular inter-reflection, ...

with global illumination

only diffuse inter-reflection

direct illumination

Global Illumination

- *Direct illumination + indirect illumination;* e.g.
 - Direct = reflections, refractions, shadows, …
 - Indirect = diffuse and specular inter-reflection, ...

Reflectance Equation

- Lets start with the diffuse illumination equation and generalize...
- Define the all encompassing reflectance equation...
- Then specialize to the subset called the rendering equation...

Reflectance Equation

diffuse_illumination = $0 + I_L \quad K_D \quad l \cdot n$

diffuse_illumination = $0 + I_L = K_D = l \cdot n$

$$L_r(x, \omega_r) = L_e(x, \omega_r) + L_i(x, \omega_i) f(x, \omega_i, \omega_r)(\omega_i \ n)$$

iffuse_illumination = 0 + I_L K_D $l \cdot n$

[Slides with help from Pat Hanrahan and Henrik Jensen]

 \mathbf{C}

$L_r(\overline{x,\omega_r}) = \overline{L_e(x,\omega_r)} + L_i(\overline{x,\omega_i})f(\overline{x,\omega_i,\omega_r})(\overline{\omega_i \bullet n})$

Emission

Reflected Light (Output Image)

Incident Light (from light source) BRDF Cosine of Incident angle

[Slides with help from Pat Hanrahan and Henrik Jensen]

Sum over all light sources

BRDF

$$L_r(x,\omega_r) = L_e(x,\omega_r) + \sum L_i(x,\omega_i) f(x,\omega_i,\omega_r)(\omega_i \bullet n)$$

Reflected Light (Output Image) Emission

Incident Light (from light source) Cosine of Incident angle

Replace sum with integral

$$L_{r}(x, \omega_{r}) = L_{e}(x, \omega_{r}) + \int_{\Omega} L_{i}(x, \omega_{i}) f(x, \omega_{i}, \omega_{r}) \cos \theta_{i} d\omega_{i}$$
Reflected Light Emission Incident BRDF Cosine of
(Output Image) Light (from Incident angle light source)

$L_r(x,\omega_r) = L_e(x,\omega_r) + \int_{\Omega} L_i(x,\omega_i) f(x,\omega_i,\omega_r) \cos \theta_i d\omega_i$

The Challenge $L_{r}(x,\omega_{r}) = L_{e}(x,\omega_{r}) + \int_{\Omega} L_{i}(x,\omega_{i})f(x,\omega_{i},\omega_{r})\cos\theta_{i}d\omega_{i}$

 Computing reflectance equation requires knowing the incoming radiance from surfaces

 ...But determining incoming radiance requires knowing the reflected radiance from surfaces

$$L_{r}(x,\omega_{r}) = L_{e}(x,\omega_{r}) + \int_{\Omega} L_{r}(x',-\omega_{i})f(x,\omega_{i},\omega_{r})\cos\theta_{i}d\omega_{i}$$
Reflected Light Emission Reflected BRDF Cosine of
(Output Image) Light (from Incident angle

Rendering Equation (Kajiya 1986)

Figure 6. A sample image. All objects are neutral grey. Color on the objects is due to caustics from the green glass balls and color bleeding from the base polygon.

$$\begin{split} L_r(x, \omega_r) = L_e(x, \omega_r) + \int_{\Omega} L_r(x', -\omega_i) f(x, \omega_i, \omega_r) \cos \theta_i d\omega_i \\ \text{Reflected Light} & \text{Emission} & \text{Reflected} & \text{BRDF} & \text{Cosine of} \\ (\text{Output Image}) & \text{Light} & \text{Incident angle} \\ \text{UNKNOWN} & \text{KNOWN} & \text{UNKNOWN} & \text{KNOWN} & \text{KNOWN} \end{split}$$

Rendering Equation

$$\begin{array}{lll} L_r(x, \omega_r) = L_e(x, \omega_r) + \int L_r(x', -\omega_i) \ f(x, \omega_i, \omega_r) \cos \theta_i d\omega_i \\ \mbox{Reflected Light} & \mbox{Emission} & \mbox{Reflected} & \mbox{BRDF} & \mbox{Cosine of} \\ \mbox{Output Image}) & \mbox{Light} & \mbox{Incident angle} \\ \mbox{UNKNOWN} & \mbox{KNOWN} & \mbox{KNOWN} & \mbox{KNOWN} \end{array}$$

After applying to simple math and simplifications, it turns we can approximately express the above as

L = E + KL

L, E are vectors, K is the light transport matrix

Rendering as a Linear Operator... $L = E + KE + K^2E + K^3E + ...$ **Emission directly** From light sources **Direct Illumination** on surfaces **Global Illumination** (One bounce indirect) [Mirrors, Refraction] (Two bounce indirect) [Caustics, etc...]

Ray Tracing

$L = E + KE + K^2E + K^3E + \dots$

Emission directly From light sources

> Direct Illumination on surfaces

OpenGL Shading Global Illumination (One bounce indirect) [Mirrors, Refraction] (Two bounce indirect) [Caustics, etc...]

Figure 6: Inverse light transport applied to images I captured under unknown illumination conditions. I is decomposed into direct illumination I^1 and subsequent *n*-bounce images I^n , as shown. Observe that the interreflections have the effect of increasing brightness in concave (but not convex) junctions of the "M". Image intensities are scaled linearly, as indicated.

Figure 9: Inverse light transport applied to images captured under unknown illumination conditions: input images I are decomposed into direct illumination I^1 , 2- to 5-bounce images I^2-I^5 , and indirect illuminations $I - I^1$.

Rendering Equation and Global Illumination Topics

- Local-approximations to Global Illumination
 - Diffuse/Specular
 - Ambient Occlusion
- Global Illumination Algorithms
 - Ray tracing
 - Path tracing
 - Radiosity
- Bidirectional Reflectance Distribution Functions (BRDF)

Rendering Equation and Global Illumination Topics

Local-approximations to Global Illumination

 Diffuse/Specular

– Ambient Occlusion

- Global Illumination Algorithms
 - Ray tracing
 - Path tracing
 - Radiosity
- Bidirectional Reflectance Distribution Functions (BRDF)

 It is a lighting technique to increase the realism of a 3D scene by a "cheap" imitation of global illumination

History

- In 1998, Zhukov introduced obscurances in the paper "An Ambient Light IlluminationModel."
- The effect of obscurances : we just need to evaluate the *hiddenness* or occlusion of the point by considering the objects around it.

Occlusion Factor/Map

- Shooting rays outwards
- Determine the occlusion factor at p as a percentage; e.g., occ(p) ∈ [0,1]

Ambient Occlusion in a Phong Illumination Model

$$I = I_a + I_d + I_s$$
$$I_a = IA \cdot occ(p)$$

Constant ambient intensity rendering

Modulate the intensity by an occlusion factor

Inside-Looking-Out Approach: Ray Casting

- Cast rays from **p** in uniform pattern across the hemisphere.
- Each surface point is shaded by a ratio of ray intersections to number of original samples.
- Subtracting this ratio from 1 gives us dark areas in the occluded portions of the surface.

e.g.: Cast 13 rays 9 intersections, so occ(p)= ?

Inside-Looking-Out Approach: Ray Casting

- Cast rays from **p** in uniform pattern across the hemisphere.
- Each surface point is shaded by a ratio of ray intersections to number of original samples.
- Subtracting this ratio from 1 gives us dark areas in the occluded portions of the surface.

e.g.: Cast 13 rays
9 intersections, so
occ(p)=4/13;
⇒ Color * 4/13
Inside-Looking-Out Approach: Hardware Rendering

- Render the view at low-res from *p* toward normal *N*
- Rasterize black geometry against a white background
- Take the (cosine-weighted) average of rasterized fragments.

11 black fragments ⇒ Color * 14/25

Comments

- Potentially huge pre-computation time per scene
- Stores occlusion factor as vertex attributes
 - Thus needs a dense sampling of vertices
- Variations on sampling method
 - "Inside-out" algorithm
 - "outside-in" alternative (not explained)

Outside-Looking-In Approach

• What would you do?

Outside-Looking-In: One option is [Sattler et. al 2004]

$$c_i = \sum_{j=1}^k M_{ij} I_j$$

$$M_{ij} = \begin{cases} \mathbf{n}_i \cdot \mathbf{l}_j &: \text{ vertex visible} \\ 0 &: \text{ vertex invisible} \end{cases}$$

$$c_i = \sum_{j=1}^k M_{ij} I_j$$

[Sattler et al. 2004]

- For each light on the light sphere
- Take the depth map (for occlusion query)
- Use occlusion query to determine the visibility matrix

Another option: Screen-Based AO

 SHANMUGAM, P., AND ARIKAN, O. 2007. Hardware Accelerated Ambient Occlusion Techniques on GPUs. In Proceedings of ACM Symposium in Interactive 3D Graphics and Games, ACM.

Screen-Based AO

Screen-Based AO

• What would you do?

Rendering Equation and Global Illumination Topics

- Local-approximations to Global Illumination
 - Diffuse/Specular
 - Ambient Occlusion
- Global Illumination Algorithms
 - Ray tracing
 - Path tracing

– Radiosity

 Bidirectional Reflectance Distribution Functions (BRDF)

Radiosity

- Radiosity, inspired by ideas from heat transfer, is an application of a finite element method to solving the rendering equation for scenes with purely diffuse surfaces.
- The main idea of the method is to store illumination values on the surfaces of the objects, as the light is propagated starting at the light sources.

[Radiosity slides heavily based on Dr. Mario Costa Sousa, Dept. of of CS, U. Of Calgary]

Radiosity

 Calculating the overall light propagation within a scene, for short global illumination is a very difficult problem.

 With a standard ray tracing algorithm, this is a very time consuming task, since a huge number of rays have to be shot.

Radiosity (Computer Graphics)

- <u>Assumption #1:</u> surfaces are diffuse emitters and reflectors of energy, emitting and reflecting energy uniformly over their entire area.
- <u>Assumption #2:</u> an equilibrium solution can be reached; that all of the energy in an environment is accounted for, through absorption and reflection.
- Also <u>viewpoint independent</u>: the solution will be the same regardless of the viewpoint of the image.

Radiosity

• Equation:

$$B_i = E_i + \rho_i \sum B_j F_{ij}$$

Radiosity

-

Classic Radiosity Algorithm

Solving for radiosity solution

- The "Full Matrix" Radiosity Algorithm
- Gathering & Shooting

Radiosity Matrix

$$B_i = E_i + \rho_i \sum_{j=1}^n F_{ij} B_j$$

What is the matrix form? (like "Ax=b")

$$B_i - \rho_i \sum_{j=1}^n F_{ij} B_j = E_i$$

$$\begin{bmatrix} 1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & -\rho_1 F_{1n} \\ -\rho_2 F_{21} & 1 - \rho_2 F_{22} & \cdots & -\rho_2 F_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_n F_{n1} & -\rho_n F_{n2} & \cdots & 1 - \rho_n F_{nn} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} E_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix}$$

Radiosity Matrix

• The "full matrix" radiosity solution calculates the form factors between each pair of surfaces in the environment, then forms a series of simultaneous linear equations.

$$\begin{bmatrix} 1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & -\rho_1 F_{1n} \\ - \rho_2 F_{21} & 1 - \rho_2 F_{22} & \cdots & -\rho_2 F_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ - \rho_n F_{n1} & -\rho_n F_{n2} & \cdots & 1 - \rho_n F_{nn} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} E_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix}$$

• This matrix equation is solved for the "B" values, which can be used as the final intensity (or color) value of each surface.

Solving for radiosity solution

- The "Full Matrix" Radiosity Algorithm
- Gathering & Shooting

Gathering

 In a sense, the light leaving patch i is determined by gathering in the light from the rest of the environment

$$B_i = E_i + \rho_i \sum_{j=1}^n B_j F_{ij}$$

 B_i due to $B_j = \rho_i B_j F_{ij}$

Gathering

<u>Gathering light</u> through a hemi-cube allows <u>one</u> <u>patch</u> radiosity to be updated.

Gathering

Row of F times B

Calculate one row of F and discard

Successive Approximation

 L_{e}

 $K \circ L_{\rho}$

 $K \circ K \circ L_{\rho}$

 $K \circ K \circ K \circ L_{\rho}$

 L_{ρ}

 $L_e + K \circ L_e \qquad L_e + \cdots K^2 \circ L_e \qquad L_e + \cdots K^3 \circ L_e$

Shooting

<u>Shooting light</u> through a single hemi-cube allows
<u>the whole environment's</u>
<u>radiosity values</u> to be updated simultaneously.

Shooting

Brightness order

Column of F times B

Artifacts

Error Image

- A. Blocky shadows
- **B.** Missing features
- C. Mach bands
- D. Inappropriate shading discontinuities E. Unresolved discontinuities

What can you do?

Increase Resolution

Adaptively Mesh

e.g., Discontinuity Meshing

More examples...

Rendering Equation and Global Illumination Topics

- Local-approximations to Global Illumination
 - Diffuse/Specular
 - Ambient Occlusion
- Global Illumination Algorithms
 - Ray tracing
 - Path tracing
 - Radiosity
- Bidirectional Reflectance Distribution Functions (BRDF)

Measuring BRDFs

• BRDF is 4-dimensional, though simpler measurements (0D/1D/2D/3D) are often useful

Measuring Reflectance

0°/45° Diffuse Measurement 45°/45° Specular Measurement

Gloss Measurements

• "Haze" is the width of a specular peak

BRDF Measurements

• Next step up: measure over a 1- or 2-D space

Gonioreflectometers

• Or a 4D space

Image-Based BRDF Measurement

- A camera acquires with each picture a 2D image of sampled measurements
 - Requires mapping light angles to camera pixels

Ward's BRDF Measurement Setup

Ward's BRDF Measurement Setup

Each picture captures light from a hemisphere of angles

]

Measurement

- 20-80 million reflectance measurements per material
- Each tabulated BRDF entails
 90x90x180x3=4,374,000 measurement bins

Course 10: Realistic Materials in Computer Graphics

Wojciech Matusik