CS334 – Fundamentals of Computer Graphics

Prior Final Projects

Daniel G. Aliaga
Garden Pavilions

K. K.

Purdue University
Motivation

• **Goal:**
 – Procedurally generate model of garden pavilions using constructive grammar

Hua Liu, Qing Wang, Wei Hua, Dong Zhou, and Hujun Bao, 2005. Building Chinese Ancient Architectures in Seconds
Procedurally Generated Transport Networks

R. D.
Transport Network Types - Gridded
Transport Network Types - Interconnected
3-D Water Simulation

Z. J.
Demonstration
Wave Intensity

Light Waves

Small Waves

Medium Waves

Heavy Waves
Alternative Nozzle Geometry Slicer Toolkit or…

ANGST

A. P.
Exactly What I Did:
alter all print paths on perimeter

- Multiply the normal of all line segments by the nozzle shape \((x,y)\)
- Shift the edge location along the new ‘normal’ vector

Shape with compensated geometry to stretch the part so it prints circular (left) vs traditional circular part (right)

Exactly What I Did:
Alter the infill so it fills in the thickest lines possible

- Aggressively aligns the infill to be perpendicular with the nozzle widest access
- Expands the infill spacing so that the now larger, wider infill can flow into the space.

Infill with infill aligned with the nozzle width (left) with the dumb infill, printed denser due to the need to fill in the space.
Real-Time Assistance for Colorblind Gaming

R. V.
Goal: Make differences along the red-green color axis perceptible by color
Procedurally Generated Terrain

B. W.
Motivation

- I have been interested in procedural generation since before I was a computer science student.
- Procedural generation is almost making an artist out of a computer program.
- An interest in video games and their immersive environments at a young age pushed me to explore this topic:
 - Minecraft
 - Terraria
 - The Binding of Isaac
 - Spelunky
 - Sid Meier’s Civilization
 - Diablo
Examples of my Terrain

- Intensity = 100
- Roughness = 30

- Intensity = 200
- Roughness = 30
Examples of my Terrain (extremes)

- Intensity = 100
- Roughness = 100

- Intensity = 100
- Roughness = 10
Examples of this in Games

Similar to average values in terrain generator:
- Intensity ~100, Roughness ~30

Similar to higher values in terrain generator:
- Intensity ~200, Roughness ~50
Final Presentation: Water & Buoyancy

E. Z.
Motivation

• Improve upon Assignment 2
• 3D simulation of water
Approach

• 3D representation of waves
• Sum of sine waves
Approach – 3D wave representation
Approach – sum of sine waves

- One sine wave from the origin (left corner)
- Four sine waves from various starting points
Approach - buoyancy
Rigid Bodies

Zachary Neumann
Virtual Sandbox & Game

Y. L.
Motivation

Virtual Sandbox

Treasure Hunt
SandBOX Observation

- Layout
 Snow >> Rock >> Tundra >> Forest
 >> Grass >> Sand >> Water

- Mix texture based on height between sections
SandBOX APPROACH

- Load Image
- Generate Texture
- Bind Texture with sampler
- Modify vertex and fragment shader
GAME OBSERVATION

Hide

Show
GAME DEMO

Mechanism of Game:
Use high location hand wave to update location randomly

Demo:
Set the gold block always visible
Proposals (Fast Forwards)
Procedural Modeling with sci-fi aesthetics

B. A.
Inspiration

http://www.deviantart.com/art/FUSE-Soviet-Space-Station-375498745
Inspiration

- Mass Effect 2 - Bioware
Project Goals

• Explore generation of different space stations styles
 – Perhaps ‘Borg’ vs ‘Watchtower’

• Focus will be on geometric modelling as

 - Procedural generation of surface detail for science fiction spaceships
 - Kinnear, Kaplan 2010
Implementation

- C++ and OpenGL w/GLSL shaders, extending the framework built from course assignments
- Split/shape grammar rules guided by input file

"Procedural generation of surface detail for science fiction spaceships"
-Kinnear, Kaplan 2010
Demo

• Camera explorable OpenGL scene to simplify viewing results produced with parameters from input file
Pen-and-Ink
Non-Photorealistic Renderer
S. K.
Pen-and-Ink NPR

• Develop and implement a pen-and-ink renderer using precreated tonal maps
• Building off of the work done in Computer Generated Pen- by Winkenbach et
Example Precreated Tonal Maps

- Assign tone dependent on intensity of light
- Assign texture from user input
• Boundary outlines express texture
 – Each stroke texture has corresponding boundary outline

• Minimize interior outlines
 – Only drawn when the tones of two neighboring faces are not very distinguishable

• Accent outline
 – Used for shadowing and relief
Demo

• Real-time rendering of several sample objects and manipulating view point
• Real-time rendering of an environment from multiple view points.
Image Sources

• All images retrieved from:
Terrain Procedural Modeling

D. K.
Terrain Procedural Modeling
What Am I Going To Do?

1. Procedural Modeling to Create a River
What Am I Going To Do?

2. Based on river location generate the terrain
 1. Generate down-sloping terrain from mouth of river
 2. Near river add more foliage / green terrain
 3. Away from river procedurally generate terrain
Demo
Procedural Modeling and Fluid Dynamics Simulation

Terrain and flora with water generated through SPH

I. O. and W. B.
Overview

● A 3D Generated Scene/Game
● This will be split into three main parts
 - Terrain generation
 - Plant generation
 - SPH water simulation
Main Aspects

- Procedurally generated environment
- Realistic fluid flow dynamics.
- User can create/interact with water.
We will be using the **Diamond Square Algorithm** to generate random terrain.

The following is constantly looped:

- **Diamond Step**: make a midpoint for every square and give it a value of the average of the corners with a random value in a predefined range.

- **Square Step**: make a midpoint for every diamond and give it a value of the average of the corners with a value in a certain range.[1][2]
Terrain Generation

- Texture and colours will be added depending on the heights to make a more varied landscape, such as snow capped peaks.

- Mountains could be forced in this method by altering seed value or changing the range of the added value at certain points.
Flora Generation

- We will use L System grammars to generate a variety of plants.[3]
- Tree will be generated by altering trunk size and adding leaves.
- Different textures will be mapped on to the object.
- Plants will only be located at certain heights.
- Plants can be made in 3d by adding a random direction for which the branches should stem from.[4] [5]
Fluid Simulation

- Lagrangian Method
 - coordinates move with the fluid
 - lower accuracy, but faster
 - preferred method for real-time fluid simulation
- Eulerian Method
 - grid-based
 - more consistent, but slower\[6\]
The concept for this method of water simulation is to constantly keep track of thousands of particles, while monitoring how they react to the environment and each other. Although computationally heavy, it can get great results for water. The water surface is then smoothed over the top of the individual particles.
Smooth particle Hydrodynamics

- Each particle has a set of values stored such as position, velocity, density, mass and pressure and they values are used to calculate a new position after altering the acceleration at every iteration.

- Basically calculating the change in velocity for every particle at every iteration in time: $\frac{\partial V}{\partial t} = A_{\text{pressure}} + A_{\text{viscosity}} + A_{\text{gravity}} + A_{\text{external}}$ [6]

- Every iteration the density and the pressure needs to be recalculated in order to find the
Team Dynamics

We will be using the agile development technique of pair programming so that we both get the experience in working through the different areas of this project. Also we will be able to program more efficiently as errors, tiredness and complications in code will be less of a problem.
References

[1]: Procedurally generated terrain tutorial through fractal: http://www.gameprogrammer.com/fractal.html
[5]: Tree generated with L Systems: http://www.ms.is.ritsumei.ac.jp/profile/staff/ijiri/ProjSketchLsystem/index.html
[6]: SPH simulation, section 5: http://cg.informatik.uni-freiburg.de/intern/seminar/gridFluids_fluid-EulerParticle.pdf
[7]: SPH: http://www.glowingoog.com/sph/bin/kelager.06.pdf
Non-Photorealistic Rendering

Contour / Silhouette

A. S.
Introduction

• The silhouette is the simplest form of line art and is used in cartoons, technical illustrations, architectural design and medical atlases.

• Given E as the eye vector, a point on a surface (u, v) with surface normal N is a silhouette point if $E \cdot N = 0$.

• Used for realistic rendering and interactive techniques.

• Object space algorithms involve computations in three dimensions and produce a list of silhouette edges or curves for a given viewpoint.
Object – Space Silhouette Algorithms

- Existing Algorithms such as:
 - Brute Force
 - Edge Buffer
 - Probabilistic
 - Gauss Map Arc Hierarchy
Edge Buffer

• Iteration over polygons.
• Create a polygon list.
 – Have a front flag and a back flag.
• Create an edge list.
• Edges sharing exactly one front and back facing polygon
Procedural Modeling of Skyscrapers
How?

Input:
- Height/number of stories
- Length and width of footprint
Building Generation

Types of Buildings

- Curved
- Rectangular
Building Variation

Twist

Tiered
Generating Building Textures

Randomly generate textures

- Window
- Color
- Door
- Bump
Demo

Vary input
Generate multiple buildings per input
Particle Audio Visualizer

N. S.
How?

• Web Graphics Library (WebGL)
• Web Audio API
 – Audio loading & playing
 – FFT Analyzer
• System of Particles
• Frequency Bins
• Lighting, Velocity, Fade
Demo

- Live on web page
- Vote on song(s) via piazza
Example
PM-Plants

M. J.
What: Modeling Plants 2D/3D

Grammar defined as a tuple:
(V, A, P)
V = variables and constants
A = axiom
P = production rules
Grammar to produce this colored plant:
variables : 0, 1
constants: [,]
axiom : 0
rules : (1 → 11), (0 → 1[0]0)

Drawing Rules:
0 : draw leaf, green color
1 : draw branch, brown color
[: push position to stack and turn left 45 deg ,] : pop position from stack
Iteration 5

Stochastic L-System

Probability based generation of leaves and branches

1 -> 11, $P = .33$
1 -> [1]0 , $P = .33$
1-> 1[01]0 , $P = .33$

Many variations to create complexity
3D L-System

Have grammar that manipulates segments in 3d space. Pitch, Roll, Yaw, increase size, decrease size, change color.

iterations=7, initial angle=22.5
axiom: A

Rules:
A → [&FL!A]/ /// /[&FL!A]/ /// /[&FL!A]
F → S / /// F
S → F L
L → [”∧∧{-f+f+f-|-f+f+f}]

How and Demo

Parser to understand the grammar
Interpreter compute iterations. Draws segments based on orientation from grammar
OpenGL/C++ program to draw based on produced string
Demo will consist of rendering variety of 3d/2d plants using various L-Systems