
CS334/ECE30834: Assignment #3 - Map it!
Normal Mapping + Shadow Mapping

Out: February 21, 2022
Back/Due: March 9, 2022, 11:29 AM

Objective:
The objective of this assignment is helping you understand texture mapping, bump mapping /
normal mapping and shadow mapping. First you will learn how to introduce more details to the
existing lighting system using normal mapping, which increases the complexity of the illusion on
the surface; then you will have a feeling of how shadows improve the sense of depth and
immersion to the scene.

Summary:
In this assignment, you are provided with a scene with several cubes placed on a plane. For
simplicity there is only one directional light source. Your first task is adding normal mapping
(also called bump mapping) to the illumination system, for which you need to first calculate
tangent/bitangent vectors and then, in the shader, construct the TBN coordinate system and
convert the computation of lighting from world space to tangent space. In the second task, the
scene will be rendered twice. In the first pass it is rendered from the light’s perspective to get the
depth map as texture, in the second pass the scene is just rendered as normal. So you have to first
calculate the matrix to convert the scene from world space to the light’s viewing space (the goal
is to get the depth map which will be used as texture in the second pass), then in the shader you
need to implement a function to decide whether a fragment is in shadow.

Specifics:
1. Start with the templates from the course website (choose FreeGLUT or Qt). The

templates support Windows and Linux environments. Compile and run the templates.
Both templates come with keyboard and mouse controls that allow you to rotate the view,
move and rotate the light sources, change the viewing modes, and alter the light and
material properties. Read the command-line output for an overview of the provided
controls. Additionally, the Qt template comes with some GUI widgets that do the same
thing. Upon starting the program, a config file config.txt is read that gives default
values for the abovementioned properties. Feel free to modify this file when testing your
code. You may also provide an alternative configuration file as a command-line
argument. The textures (also the normal maps) are put under textures/.

2. Model loading and setup. The models used in this assignment are cube.obj and
plane.obj, whose format is more complex than the models in the previous assignment,
since texture coordinates are involved. For the specification of OBJ files, you can refer to
the instructions here. In config.txt, rotation matrices and translation vectors are also

https://en.wikipedia.org/wiki/Wavefront_.obj_file


included to give the objects an initial position, and their format is the same as in
assignment #1. The scene only has one directional light. You can use a keyboard/mouse
to change the position of the light/objects.

3. Normal mapping (60%). The normals in normal maps are in their local coordinate
systems (i.e. tangent space/TBN space). To ensure correct lighting, you have to obtain the
TBN system for each face and then convert all related light vectors to this system and
compute the shading.
Tangents and bitangents (20%). In mesh.cpp, you need to complete the load
function. For each triangle of the mesh, given the positions and the texture coordinates of
the three vertices, you need to calculate tangent and bitangent vectors, and then store
them to vertices, so that they can be passed to shaders. From the lecture slides you can
find the procedure to get them.
Tangent space (20%). It is a space local to the surface of the model. It consists of
normal, tangent and bitangent vectors. Normal is already given as face normal. In the
image below, normal is pointing out of the image, the pink arrows are bitangents and the
green ones are tangents. In the vertex shader, you need to set up the TBN system
and then convert the related lighting vectors (light position, viewer vector and fragment
position) to tangent space, before passing them to the fragment shader.

Lighting calculation (20%). The normal map is given as texCubeNorm. There are
three places in the fragment shader where you need to get the normal, the light
vector and the view vector (all in tangent space). If you calculate them correctly, you will
see the result below (when you turn on normal mapping mode by pressing m/M):



Turning on normal mapping v.s. Turning off:

4. Shadow Mapping (40%). In the implementation of shadow mapping, there will be two
passes.
In the first pass, to decide what is visible and what is invisible (thus in shadow), you will
render the scene from the light’s perspective. To generate the depth map/shadow map,
this stage requires two very simple shaders (called depth_v.glsl and depth_f.glsl, already
provided).
Render from light (20%). You need to finish the paintGL function of
glstate.cpp. Your task is calculating lightSpaceMat, which is the transform
matrix to convert the scene to the light’s space. To do that, you may first get



lightProj and lightView matrices and then use them to obtain lightSpaceMat.
Then it is passed into depth_v.glsl to transform the scene to the light’s viewing space.

Before the second pass, the depth map/shadow map is generated as texture and will be
used for testing shadows. And this time the scene is rendered from the camera’s space.
Shadow testing (20%). The shadow map is given as shadowMap in the fragment
shader. Your job is to implement the function calculateShadow in the shader. In this
function, you will first read the closest depth value from the depth map, then get the
depth of the current fragment, and compare them to decide whether this fragment is in
shadow. The current parameter light_frag_pos is the fragment position in light’s
space. Feel free to add other arguments to the function if you think they are necessary.
Finally apply shadow to the diffuse term (shadow should have no effect on the ambient
term). You shall see the result as below:



5. Extra credit (5%). Removing artifacts. When moving the light to certain positions
(especially when turning off normal mapping), you shall see striped pattern like this:

This pattern is called shadow acne. This is caused by multiple fragments sampling the
same value from the depth map. This can be fixed by adding a bias to the depth, its value
changes according to the angle between the light vector and the surface. You need to
remove shadow acne in the function calculateShadow.



6. The functions/methods requiring your implementation will be marked “TODO”;
however, depending on your particular implementation there might be other places for
you to change code. You are expected to add/modify the code as necessary to make sure
the application runs smoothly.

Turn-in:
To give in the assignment, please use Brightspace. Give in a zip file with your complete
project (project files, source code, and precompiled executable). The assignment is due
BEFORE class on the due date. It is your responsibility to make sure the assignment is
delivered/dated before it is due. If you wish to receive confirmation of receipt, please ask by
email in advance.

Don’t wait until the last moment to hand in the assignment!

For grading, the program will be compiled on Linux and run from the terminal (with Visual
Studio as a fallback – please try to avoid platform-specific code (e.g., don’t #include
<windows.h>)), run without command line arguments, and the code will be inspected. If the
program does not compile, zero points will be given. If you have more questions, please ask on
Piazza!

Good luck!


