
CS334/ECE30834: Assignment #1 - Project it!
Linear Algebra + Perspective/Orthographic Projections

Out: January 24, 2022
Back/Due: February 7, 2022, 11:29 AM

Objective:
The objective of this assignment is helping you understand matrix transformations, coordinate
systems in OpenGL and camera projection mechanisms. In this assignment you will learn to use
linear algebra to transform the coordinates from one space to another coordinate space, apply
matrix operations to objects for an interactive application, and set up cameras.

Summary:
In this assignment, you are provided with a scene with several OBJ models (e.g., a floor with a
cube, a teapot and a pyramid on it). Your tasks for the assignment are to complete the framework
so that it computes a model transformation for a given scene of three objects, viewing
transformation, and a projection transformation. First you will need to construct the scene by
applying transformations to the objects (rotation/translation/scaling). Then you need to place two
cameras into the scene for two views, one using perspective projection and the other using
orthographic projection, to show the difference. After setting these up, the application should
also allow the user to walk around (including turning left/right, stepping forward/backward).

Specifics:
1. Start with the templates from the course website (choose FreeGLUT or Qt). The

templates support Windows and Linux environments. Compile and run the templates.
Note that this time most events (e.g., walking around the scene) are expected to be
controlled by keyboard, so not many graphical user interfaces are provided. But you can
always add UI components according to your needs.

2. (15%) Model Setup. When you successfully run the templates, you’ll see four objects
overlapping with each other (a cube, a teapot, a pyramid and a ground plane). The scene
is a mess because the vertices of the objects are in their local coordinates, having not
been transferred to world space yet. Your first task is to calculate a model matrix for each
object so that after the transformation you construct the scene. To calculate the model
matrices, you will need scene.txt, a file under models directory. The format is:

k
fn1
rMat1
tVec1
fn2
…

where k is the number of objects (i.e., 4), fni is the filename of the ith object, rMati is the
3x3 rotation matrix of the object (written in three lines and three columns), and tVeci is
the 3D translation vector of the object (including three elements, written in one line). You
need to read and parse this file to get the models and the matrices/vectors before applying
the transformation (scaling, rotation & translation) on the objects. In scene.cpp, you need
to complete the function Scene::parseScene. As given, the function already reads-in the
mesh file fni into a mesh object. You need to implement reading in the rotation matrix and
translation vector and storing it in the 4x4 matrix of each mesh object, e.g.,
mesh->modelMat. You might have to transpose the matrix depending on how you read it
into the memory.

3. In one constructor of camera.cpp, view matrix is hard-coded so that you will get a better
initial view when you get the template to run. Remember to delete it when you move to
the step below.

4. (25%) Projection Setup. You will set up two camera objects, which are stored in the
GLState object (camGround and camOverhead). One for a front view where you are
looking down -z and +y is up (using perspective projection of vertical FOV 45 degrees),
and one for an overhead view where you are looking down -y (using orthographic
projection). In the camera class, there is proj and view matrix for you to fill out.
According to the camType, you should update proj inside the updateViewProj function
(the view matrix is set up as described later). For the aspect ratio needed for the
projection matrices, you must compute the aspect ratio from the window size stored in
the camera class. In main.cpp/app.cpp, the code swaps between camera views when the
user presses ‘s’. For example, when correctly implemented the user expects to see the
images below (left is front view and right is overhead view):

5. (60%) View Setup. Next, you must add to the camera class code to implement the
functionality of “walking around” of the scene. When in the front view, the user should

look slightly downwards. But, the user walks forward/backward parallel to the floor, and
rotates left/right about the y axis (i.e., the up axis), centered at the camera position. When
in the overhead view, the user rotates left/right about the y axis (i.e., the same up-axis),
and moves forward/backward (parallel to the floor). You must implement the functions
moveForward, moveBackward, turnLeft, and turnRight in the class Camera that perform
the aforementioned view functionality by altering the view matrix stored in the Camera
class. The user controls are ‘s’ to shift views, ‘a’ to turn left, ‘d’ to turn right, ‘w’ to move
forward, ‘x’ to move backward. In main.cpp/app.cpp, the code calls the above functions
as needed.

6. In class GLState, the method GLState::paintGL makes uses of the above matrices you
defines (i.e., mesh->modelMat, camera->view, camera->proj). This function will
combine the transformations and pass it to the shader.

7. GLM provides methods to do mathematics, however you are only allowed to use
glm::perspective, glm::ortho, glm::sin, glm::cos, glm::radians, glm::cross, glm::dot,
glm::normalize and the basic data types (e.g., vec3, vec4, mat3, mat4). You should NOT
use glm::lookAt, glm::scale, glm::rotate, glm::translate anywhere in your code.
Implement them by yourself if needed.

8. The functions/methods requiring your implementation will be marked “TODO”;
however, depending on your particular implementation there might be other places for
you to change code. You are expected to add/modify the code as necessary to make sure
the application runs smoothly.

Turn-in:
To give in the assignment, please use Brightspace. Give in a zip file with your complete
project (project files, source code, and precompiled executable). The assignment is due
BEFORE class on the due date. It is your responsibility to make sure the assignment is
delivered/dated before it is due. If you wish to receive confirmation of receipt, please ask by
email in advance.

Don’t wait until the last moment to hand in the assignment!

For grading, the program will be compiled on Linux and run from the terminal (with Visual
Studio as a fallback – please try to avoid platform-specific code (e.g., don’t #include
<windows.h>)), run without command line arguments, and the code will be inspected. If the
program does not compile, zero points will be given. If you have more questions, please ask on
Piazza!

Good luck!

