
Privacy Preserving
Schema and Data Matching

Monica Scannapieco
ISTAT and SAPIENZA – Univ. Roma, ITALY

scannapi@istat.it

Ilya Figotin
Purdue University, USA

ifigotin@cs.purdue.edu
Elisa Bertino

Purdue University, USA
bertino@cs.purdue.edu

Ahmed Elmagarmid
Purdue University, USA
ake@cs.purdue.edu

ABSTRACT
In many business scenarios record matching is performed
across different data sources with the aim of identifying com-
mon information shared among these sources. Such need is
however often in contrast with privacy requirements con-
cerning the data stored by the sources, like it is the case in
e-Health and e-Government applications. In this paper, we
propose a protocol for record matching that preserves pri-
vacy both at the data level and at the schema level. Specif-
ically, if two sources need to identify their common data,
by running the protocol they can compute the matching of
their datasets without sharing their data in clear and only
sharing the result of the matching. The protocol allows each
source to hide the records not to be shared with the other
source, the detail of the attributes in its schema, and several
other features that the source may want to keep private. The
protocol uses a third party, and maps records into a vector
space in order to preserve their privacy. So far, the mapping
of records into a vector space has been used only to improve
the matching efficiency; by contrast we demonstrate that
a proper embedding of records can also be used for assur-
ing privacy. Experimental results show the efficiency of the
matching protocol in terms of precision and recall as well as
the good computational performance.

1. INTRODUCTION
Record matching is the process of identifying if two (or

more) records represent the same real world entity or not.
Within a single source, record matching is executed for iden-
tifying and eliminating duplicate records. Across sources,
record matching can be performed for improving the data
quality of a source by means of correction by comparisons
with a better quality source, and also for the purpose of
integrating data.

In this paper, we focus on record matching performed with
the aim of identifying common information shared by two

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

data sources. In this case, records referring to the same en-
tity can represent that entity differently due to any of the
following factors: different keys (key-conflicts), errors about
the values of the record attributes (attribute-conflicts) and
possibly schema-level inconsistencies, such as different de-
scriptions (formats, types, etc.), different models, and dif-
ferent structural representations.

Several applications may require distinct data sources to
exchange and share common data. For instance consider
an e-Government scenario, in which an application wants to
make controls about citizens that are suspected of tax eva-
sion. The application may require the tax agency to share
data concerning suspected citizens with other databases, e.g.
a customer database of a company selling luxury goods;
a record matching between the agency’s database and the
company’s one can link the same persons and help the tax
control process. Though on one side such applications need
to share and integrate data, on the other side they have to
deal with a major and legitimate issue: protecting the pri-
vacy of the individuals to whom such data is related. In the
above example, the tax agency cannot simply send data re-
lated to the suspected citizens, but it must adopt techniques
for preserving their privacy.

In this paper we propose a privacy-preserving protocol to
perform record matching across two data sources, which is
more efficient than protocols based on cryptographic tech-
niques such as privacy-preserving set intersection. Our pro-
tocol has an interesting new feature that concerns the pri-
vacy preservation of database schemas. Whereas the prob-
lem of privacy protection of data has been investigated,
much less attention has been devoted to schema level in-
formation. If two companies decide to match data concern-
ing their respective customers, they first have to agree on a
common schema format to use for the actual data matching.
However, this means that they must reveal to each other how
they store their own customer information. In many cases,
companies may not be willing to give away a competitive
advantage by revealing such information.

Our protocol performs record matching by using an ap-
proach that preserves privacy of both data and schema and
has two major innovations with respect to previous ap-
proaches. With respect to approaches dealing with private
data sharing, such as the one proposed by Agrawal et al.
[2], that only perform exact matching, our protocol performs
privacy-preserving approximate matching. It is important to
notice that when data across different sources have hetero-
geneous quality, an exact match may not be very successful

in that it may likely result in very few matches. In such
cases approximate match is the only viable approach. Ap-
proximate matching is however an indirect, somewhat com-
plicated process, as it requires the computation of distance
functions among records the values of which have to be kept
private. As an example, computing a distance dist(a1,a2),
where a1 and a2 are two data items owned respectively by
sources P and Q, requires both values to be available at the
same time to one party. However under privacy constraints,
such simple condition cannot be met in that P cannot see a2

and Q cannot see a1. Even if a third neutral party is intro-
duced, such party can compute neither the distance between
the plain values of a1 and a2, nor the distance between en-
crypted values, because encryption functions do not gener-
ally preserve similarity distances. The second major inno-
vation is related to the awareness of schema information.
Beyond preserving schema privacy, we exploit schema infor-
mation throughout the instance matching process. This is
a major enhancement provided by our protocol when com-
pared to approaches based on secure set intersection, such
as the approach by Naor et al. [19]. These approaches typi-
cally consider only sets of simple objects, such as “strings”
or “points”. Therefore the comparison among these objects
is typically straightforward. By contrast our approach con-
siders sets of records that have: (i) an intensional structure
that deeply affects the instance matching protocol and (ii)
schema level heterogeneities. Another important character-
istic of our approach is that, unlike those protocols, it is
efficient also for large databases. For instance the secure set
intersection protocol by Naor et al. [19] has a complexity
in O(n2), where n is the database size, thus making this
protocol not applicable to databases.

Furthermore, our technique does not rely on the usage
of complex cryptographic processes, but assures privacy by
application of a method widely used for similarity based
searching of complex objects. The main idea of our work is
to embed records to be matched in an Euclidean space, that
is, a vector space having the Euclidean distance as norm, and
to perform the comparison in such a space. The embedding
method we use assures privacy in that it is based on a ran-
dom selections of the axes space. The usage of a metric space
is typically made when comparing images, documents, and
“complex” objects for which performing comparison in the
original space is time consuming. Jin et al. [15] have used
such an approach applied to records rather than to complex
objects and shown its efficiency and flexibility with respect
to the use of several similarity functions. However, because
this proposal does not preserve privacy, we adopt SparseMap
[14], a different embedding method which provides privacy
guarantees and has important features distinguishing it from
FastMap [14], the embedding method used by Jin et al. [15].

The rest of the paper is organized as follows. Section 2
defines the addressed problem. Sections 3 and 4 provide
the detail of the instance and schema matching protocols,
which are combined in a single one in Section 5. Section
6 analyzes the security of the protocol and Section 7 shows
its experimental evaluation. The description of related work
(Section 8) and future work (Section 9) concludes the paper.

2. PROBLEM FORMULATION
In this section, we formally define the problem investi-

gated in the paper. We start by defining the notion of com-
parison function and matching decision rule, on the basis of

which we define record matching and the problem of private
record matching addressed in the paper.

Definition - Comparison Function. Let D be a do-
main. A comparison function over D is defined as f :
Dom(D)×Dom(D) → R+. f takes as input two values from
domain D and returns a positive real value corresponding to
the distance between the input values.

The definition of comparison function can be detailed by
defining the notion of distance which is used; examples of
proposed distances include edit distance, Smith-Waterman
distance and Jaro distance (see [17] for a survey). As an
example, the edit distance between two strings is defined as
the minimum cost to convert one string into another by a se-
quence of character insertions, deletions, and replacements.
Assuming that the insertion cost and the deletion cost are
each equal to 1, the edit distance between the strings Smith
and Sitch is 2, as Smith is obtained by adding m and deleting
c from Sitch. Comparison functions are used to compare
values of attributes of specific records, in order to decide if
they match or not. Matching decision rules have the purpose
of classifying pairs of records as a match or a non-match on
the basis of the similarities computed on each correspond-
ing pair of field values. Decision rules can be quite complex
and be extracted from domain knowledge. In the following
definition, we consider a matching decision rule, which es-
sentially checks the logical AND of similarity threshold-based
conditions on pairs of record attribute values.

Definition - Matching Decision Rule. Given two rela-
tions R(A1, . . . , An) and S(A1, . . . , An), a set of n similar-
ity functions fi and a set of n positive real numbers θi called
similarity thresholds, a matching decision rule DRR,S is a
function DRR,S : R×S → {TRUE, FALSE} such that, for
each record r(a1, . . . , an) ∈ R and s(a1, . . . , an) ∈ S

DRR,S(r, s) =

8
><
>:

{TRUE} iff (f1(r.a1, s.a1) ≤ θ1)
V

. . .
V

(fn(r.an, s.an) ≤ θn)

{FALSE} otherwise

If DRR,S(r, s) = TRUE, then the pair (r, s) is a MATCH,
otherwise it is a NONMATCH.

Definition - Record Matching. Given two relations
R(A1, . . . , An) and S(A1, . . . , An), a record matching pro-
cess compares records in R with records in S on the basis
of a matching decision rule DRR,S, and determines: (i) the
set of matched records, including all the pairs of R’s records
and S’s records for which DRR,S(r, s) = TRUE and (ii) and
the set of unmatched records, including all the pairs of R’s
records and S’s records for which DRR,S(r, s) = FALSE.

Note that we assume that no duplicates are present in
any of the two relations R and S; indeed, a de-duplication
activity can be reasonably executed by each source before
starting the record matching process with the other source.
We now formulate the problem of private record matching.
Let P and Q be two parties. Consider the two following
hypotheses.

Hypothesis 1. Parties P and Q store the records
to be matched in the two relations RP (A1, . . . , An) and
RQ(B1, . . . , Bn) respectively, having identical schemas.

Hypothesis 2. Parties P and Q store the records to
be matched with possible schema-level integration conflicts
[22].

1. Sharing:
String Length Lx
Number of Strings N
dist

2. Generation of a set G of N
random strings of Length Lx
3. Embedding Space

Construction:
S1…Sz
4. Embedding of RP:
Dimensionality reduction from z to k
Construction of Pstr

5. Send:
S1…Sk 6. Embedding of RQ

Construction of Qstr

P P

1. Sharing:
String Length Lx
Number of Strings N
dist

2. Generation of a set G of N
random strings of Length Lx
3. Embedding Space

Construction:
S1…Sz
4. Embedding of RP:
Dimensionality reduction from z to k
Construction of Pstr

5. Send:
S1…Sk 6. Embedding of RQ

Construction of Qstr

P P

(a) Phase 1 and 2 of the private data matching proto-
col

1: Negotiation of a secret key k

Q

W

SW(D1,…,DL)
h

2.a: - Mapping expressions design
- Matched schema S’ P(D1,…,DS)

3.a: Encryption S’ P
HP = (h(D1,k),…, h(DS,k))

3.b: Encryption S’ Q
HQ= ((h(D1,k),…, h(DX,k))

4: HP ∩∩∩∩ HQ = ((h(D1,k),…, h(D i,k))

2.b: - Mapping expressions design
- Matched schema S’ Q(D1,…,Dx)

P

1: Negotiation of a secret key k

Q

W

SW(D1,…,DL)
h

2.a: - Mapping expressions design
- Matched schema S’ P(D1,…,DS)

3.a: Encryption S’ P
HP = (h(D1,k),…, h(DS,k))

3.b: Encryption S’ Q
HQ= ((h(D1,k),…, h(DX,k))

4: HP ∩∩∩∩ HQ = ((h(D1,k),…, h(D i,k))

2.b: - Mapping expressions design
- Matched schema S’ Q(D1,…,Dx)

P

(b) Steps of the schema matching protocol

Figure 1: Data and schema matching protocols

RP

with2

A1ID

usefull3

academic1

RP

with2

A1ID

usefull3

academic1

RQ

wiht2

A1ID

useful3

acadmic1

RQ

wiht2

A1ID

useful3

acadmic1

(a) Two example
datasets

fOOiwfOOiwwyZrTwyZrTS4

QLUHoZuawdQLUHoZuawdS3

aepIyhWHJDS2

wyZrTBpuVHS1

Reference Sets

fOOiwfOOiwwyZrTwyZrTS4

QLUHoZuawdQLUHoZuawdS3

aepIyhWHJDS2

wyZrTBpuVHS1

Reference Sets

(5.0, 4.0, 5.0, 0.0)(5.0, 4.0, 5.0, 0.0)(0.0, 5.0, 5.0, 0.0)(0.0, 5.0, 5.0, 0.0)S4

(4.0, 5.0, 0.0, 5.0)(5.0, 4.0, 0.0, 5.0)(4.0, 5.0, 0.0, 5.0)(5.0, 4.0, 0.0, 5.0)S3

(5.0, 0.0, 5.0, 4.0)(5.0, 0.0, 4.0, 5.0)S2

(0.0, 5.0, 5.0, 0.0)(0.0, 5.0, 4.0, 5.0)S1

Embedded Reference Sets

(5.0, 4.0, 5.0, 0.0)(5.0, 4.0, 5.0, 0.0)(0.0, 5.0, 5.0, 0.0)(0.0, 5.0, 5.0, 0.0)S4

(4.0, 5.0, 0.0, 5.0)(5.0, 4.0, 0.0, 5.0)(4.0, 5.0, 0.0, 5.0)(5.0, 4.0, 0.0, 5.0)S3

(5.0, 0.0, 5.0, 4.0)(5.0, 0.0, 4.0, 5.0)S2

(0.0, 5.0, 5.0, 0.0)(0.0, 5.0, 4.0, 5.0)S1

Embedded Reference Sets

(b) Reference sets and their embedded vectors

(6.0, 6.0, 6.0, 7.0)usefull3

(4.0, 5.0, 4.0, 4.0)with2

(8.0, 5.0, 7.0, 7.0)academic1

RP Embedding

(6.0, 6.0, 6.0, 7.0)usefull3

(4.0, 5.0, 4.0, 4.0)with2

(8.0, 5.0, 7.0, 7.0)academic1

RP Embedding

(c) RP embedding

(6.0, 6.0)usefull3

(4.0, 4.0)with2

(7.0, 8.0)academic1

RP Final Embedding

(6.0, 6.0)usefull3

(4.0, 4.0)with2

(7.0, 8.0)academic1

RP Final Embedding

(6.0, 6.0)useful3

(4.0, 3.0)with2

(6.0, 7.0)acadmic1

RQ Final Embedding

(6.0, 6.0)useful3

(4.0, 3.0)with2

(6.0, 7.0)acadmic1

RQ Final Embedding

(d) RP and RQ Final
embeddings

Figure 2: Application of phases 1 and 2 to an example dataset

θn…θ2θ1

An…A2A1Source_ID

…

…

…

…

…

aHnaH2aH1PH

…………

a3na32a31P3

a2na22a21P2

a1na12a11P1

θn…θ2θ1

An…A2A1Source_ID

…

…

…

…

…

aHnaH2aH1PH

…………

a3na32a31P3

a2na22a21P2

a1na12a11P1

Figure 3: Elements in the Pstr structure

The problem addressed in this paper can be formulated
as follows.
Problem Statement. Let P and Q be two parties owning
relations RP (A1, . . . , An) and RQ(B1, . . . , Bn), respectively.
The privacy-preserving record matching problem is to per-
form record matching between RP and RQ, such that at the
end of the process P will know only a set PMatch, consisting
of records in RP that match with records in RQ. Similarly Q
will know only the set QMatch. Of particular importance is
that no information will be revealed to P and Q concerning
records that do not match each other.

We first solve the problem under hypothesis 1, and then
under the more general hypothesis 2. Under hypothesis 1,
we provide the secure data matching protocol described in
Section 3. Under hypothesis 2, we complement the data
matching protocol with the schema matching protocol, de-
scribed in Section 4, and we provide the overall protocol
description in Section 5.

3. SECURE DATA MATCHING
In order to perform secure data matching, pairs of records

must be compared by means of comparison functions, typi-
cally defined for each attribute. Whichever party performs
the comparison should compute a distance between attribute
values, without seeing the plain values of these attributes.
Nevertheless, it is not possible to simply encrypt values, as
encryption does not generally preserve the distance between
values.

In order to solve this problem, besides the two parties P
and Q, we introduce a third party, named W. The three
parties are assumed to be semi-honest [7], meaning that
they follow the protocol, but they are also allowed to try
inferring information. Our approach is based on the idea
of transforming records of RP and RQ into a metric space
while preserving the distances between the record values.
Such transformation has the main purpose of protecting
data from privacy disclosure. The third party W will com-
pare the records in the metric space in order to decide their
matching. Several methods to embed a set of objects in a
metric space have been proposed, including FastMap, Multi-
dimensional Scaling, and SparseMap (see [14] for a survey).
Among such methods, we have chosen SparseMap, since it
meets our goal of preserving privacy, as discussed in Section
6. The following section introduces the basic concepts of this
method and motivates the use of this embedding technique
with respect to our privacy requirements. Section 3.2 then
presents our privacy-preserving data matching protocol.

3.1 SparseMap
SparseMap is a particular instance of a class of embed-

dings known as Lipschitz embeddings [6]. Therefore, we first
describe such embeddings and then we show how SparseMap
provides heuristics to make them applicable in practice.

Lipschitz embeddings define a coordinate space where
each axis corresponds to a reference set which is a subset
of the objects to be embedded. More specifically, given
a set O of objects and a distance d in the original space,
the embedding is defined in terms of a set S of subsets
of O, S = {S1, . . . , Sk}, where each Si is a reference set.
Given an object o ∈ O, the mapping F is defined as
F (o) = (d(o, S1), . . . , d(o, Sk)), where d(o, Si) is the mini-
mum distance d(o, x) for each x in Si. Therefore, the em-
bedding is such that the coordinates of o are the distances

of o from the closest elements in each set. The method is ac-
tually based on the triangle inequality and exploits the fact
that if |d(o1, x)−d(o2, x)| ≤ d(o1, o2) then, when considering
distances from subsets of the type |d(o1, Si)− d(o2, Si)|, we
have a lower bound for d(o1, o2). This is most likely to oc-
cur if the reference sets are randomly selected according to
the following properties: (i) the number of subsets is proved
to be O(log2N) where N is the number of objects, and it
is practically approximated by blog2Nc2; (ii) each Si has a
size 2q where q = b(i− 1)/(log2N) + 1c.

The distance metric used to compare the embedded ob-
jects, called vectors, can be one of the Minksowski metrics,

which are metrics based on the norms ‖x‖p = (
P |xi|p)

1
p the

most popular of which is the Euclidean distance metric, for
which p=2. For the purpose of this work, we consider the
Euclidean distance metric dE as the distance metric used
in the embedded space. Lipschitz embeddings suffer from
two major problems. Firstly, they require O(N2) distance
computations for the embedding of an object o, as the dis-
tances between o and all objects of O must be computed. If
N is large, the cost of this computation can be prohibitive.
Secondly, the number of subsets is also large, being equal
to blog2Nc2. As the number of subsets corresponds to the
number of dimensions of the space, it should not be too
large. A typical dimensionality could be around 30.

SparseMap overcomes such general limitations of Lips-
chitz embeddings by means of two heuristics for: (i) distance
approximation, which approximates the distance between a
point o and a subset Si and (ii) greedy resampling, which
keeps only the best (most discriminating) coordinates. The
pseudo-code of the two heuristics is shown in the following.

Heuristic: Distance Approximation

Input: Object o, Set Si

Output: Approximate d(o, Si)

(1) Compute the Euclidean distance

dE
i−1(o, oj) for each oj in Si;

(2) Select ot such that dE
i−1(o, ot) =

min(dE
i−1(o, oj)) for each oj in Si;

(3) Return the actual distance d(o, ot).

Heuristic: Greedy Resampling

Input: m coordinates
Output: t <= m most discriminating
coordinates

(1) Sample some random pairs (o1, o2),
and compute their distances d(o1, o2);

(2) Select the reference set Si

that minimizes the STRESSsP
o1,o2

(dE(F (o1),F (o2))−d(o1,o2))2

P
o1,o2

(d(o1,o2))2
;

(3) Repeat t times: add the coordinate
axis that leads to the least stress when
using in conjunction with the previous
selected coordinates.

SparseMap was originally proposed for the mapping of a
database of proteins in the Euclidean space. The application
of the heuristics reduced the cost of building the space at the

price of a decreased quality of the embedding. We have used
a variant of SparseMap that ensures contractiveness of the
embedding, as proposed in [14]. Contractiveness guarantees
that distances in the embedded space are a lower bound for
distances in the original space, thus improving the quality
of the embedding in terms of recall, i.e. the proportion of
correct results found in the embedded space. However, in
general, it can be the case that the tradeoff between the
usage of the heuristics and the quality of the embedding has
to be appropriately considered, as we will further discuss in
the experimental section.

3.2 Data Matching Protocol
In this section, we describe the steps of the data matching

protocol that solves our problem statement under the hy-
pothesis 1. That is, we assume that the relations owned by
the two parties P and Q have the schemas RP (A1, . . . , An)
and RQ(A1, . . . , An). We propose a third party-based pro-
tocol that consists of the three following phases.
Phase 1: Setting of the embedding space. Phase 1
consists of the steps 1, 2 and 3 outlined in Figure 1.a. In
this phase, P and Q agree on a set of random strings to be
used for the generation of the embedding space and on the
distance dist to use as a comparison function1. Note that P
and Q start by generating random strings, so not yet using
the data from their own datasets. The set of strings is built
as follows:

• P and Q agree on a length for the strings to be gener-
ated, say Lx, and on the total number of strings to be
used for the embedding, say N (see step 1 in Figure
1.a).

• P (or alternatively Q) generates a set G of N random
strings of length Lx (see step 2 in Figure 1.a).

In Section 7, we will see how the number N of strings can
be appropriately chosen in order to have a high quality of
the resulting embedding. The distance metric dist is also
agreed upon by P and Q in order to build the embedding
space. At this point, P (or alternatively Q) builds the em-
bedding space by applying the SparseMap method according
to the following steps (see step 3 of Figure 1.a):

• The reference sets are built starting from strings in G.
Recall that the number of sets and the size of each
set is fixed, while each set includes randomly chosen
strings. Let S1, . . . , Sz be the identified reference sets.

• For each string s in G, the corresponding coordinates
in the embedded space are computed as dist(s, Si),
for each Si. Let vs1, . . . , vsN be the vectors of z real
coordinates that correspond to the strings in G.

The result is a set of N vectors corresponding to the embed-
ding of the strings, and a set of reference sets that are the
input to Phase 2.
Example 1. In Figure 2.a, two example datasets RP and
RQ are shown; for sake of simplicity, only one attribute A1

is considered, and the values are three strings for both par-
ties. Suppose that the sharing step of the protocol leads to
the following values: Lx=5, N=7 and dist=edit distance.

1Notice that a special case of comparison function can be the
“equality” function that checks exact matching: this makes
the protocol appropriate for exact matching too.

The random generation of 7 strings allows the construction
of the reference sets shown in Figure 2.b. The are 4 refer-
ence sets (equals to O(blog27c2)); the corresponding vectors
in the space are also shown in Figure 2.b; for instance, the
embedded vectors corresponding to S1 are computed as fol-
lows:

• (d(BpuVH, S1), d(BpuVH, S2), d(BpuVH, S3), d(BpuVH, S4))
= (0.0,5.0,4.0,5.0);

• (d(wyZrT, S1), d(wyZrT, S2), d(wyZrT, S3), d(wyZrT, S4))
= (0.0,5.0,5.0,0.0).

Phase 2: Embedding of RP and RQ values. Phase 2
consists of the steps 4, 5 and 6 shown in Figure 1.a. First, P
performs the embedding of its own dataset by applying the
two SparseMap heuristics described in the previous section.
The application of the greedy resampling heuristic reduces
the space dimensionality from z to k (see step 4 in Figure
1.a). Then, P embeds each value of each record in the Eu-
clidean space; a vector in the Euclidean space corresponds
to an attribute value in the table RP . In order to keep track
of the semantics of each vector in the space, a structure Pstr

that mimics the RP table has to be built by P, as shown in
Figure 3. In the figure, each vh,s is a vector corresponding to
the embedding of the value of the record h on the attribute
s. Such values are computed as follows:

• P decomposes RP by projecting RP on each column
Ai.

• The k reference sets S1, . . . , Sk previously computed
are considered as the reference sets and, for each sep-
arate column, the set of corresponding vectors is com-
puted as usual, that is, by computing the distances
dist(x, Si) where x is a value in ΠAi(RP).

The space built by one of the parties is also appropriate
for the embedding of the dataset of the other party, as it is
built on datasets that are “similar”, because of the purpose
of the matching.

Then, P sends Q the (S1, . . . , Sk) reference sets (see step 5
in Figure 1.a). Q builds a structure similar to Pstr, that we
denote as Qstr. Let us call wh,s the vectors corresponding
to the embedding of RQ values.

Both structures, that is, Pstr and Qstr, are finally sent
to W for the comparison in the subsequent phase 3. Notice
that in order for W to perform the comparison among the
embedded records, a similarity threshold value for each at-
tribute to be compared needs to be fixed. We assume that
the threshold values are agreed between the two parties and
are fixed for each attribute. Then, they are sent to the third
party W for performing the comparison; as shown in Figure
3, they are part of Pstr and Qstr. As we will see in Section 4,
such thresholds can be agreed upon by the parties P and Q
without revealing the actual attributes, but by establishing
the thresholds on a more general schema exported by the
third party.
Example 2. The application of the first heuristic, namely
distance approximation, to RP , leads to the vectors shown
in Figure 2.c. The first coordinate is calculated directly by
finding the minimum distance to S1, which is the distance
between academic and BpuVH, equal to 8. To obtain the
second coordinate, we calculate approximate distances in a
partially embedded space. The distances are computed only
by making use of the first coordinate; they are: (i) d(8.0,first

coordinate of first vector of S2)=d(8.0,5.0)=3; (ii) d(8.0,first
coordinate of second vector of S2)=d(8.0,5.0)=3. The min-
imum distance is 3 as a result either from the first vector or
from the second vector of S2. If we assume to choose the
minimum distance as a result of the second vector, we can
calculate the actual distance between academic and aepIy,
thus obtaining the second coordinate equal to 5. Therefore,
so far our embedding of academic has the two coordinates
(8.0,5.0). By proceeding with this approach, we apply the
heuristics to the computation of distances from S3 and S4

as well, and we finally obtain the full vector (8.0,5.0,7.0,7.0)
shown in Figure 2.c. A similar procedure is applied to the
remaining strings in RP .

For the application of the greedy resampling heuristic,
the purpose of which is to select the best coordinates, we
perform the following steps:

1. We pick a sample of records from RP , for exam-
ple: (i) academic (8.0,5.0,7.0,7.0); and (ii) usefull

(6.0,6.0,6.0,7.0).

2. We consider the stress parameter as defined in the
pseudo-code of the greedy resampling heuristic (Sec-
tion 3.1). By using only the first coordinate, the stress
would be 0.5625; by using only the second coordinate
the stress would be 0.7656; by using only the third
coordinate the stress would be again 0.7656; by us-
ing only the fourth coordinate the stress would be 1.0.
Therefore we choose the first coordinate as the best.

3. We now use the first coordinate in conjunction with
another coordinate to detect the two best coordinates
which minimize stress. The first and second coordi-
nates together result in a stress of 0.5191; the first and
third coordinates together result again in a stress of
0.5191; first and fourth yield even a higher stress of
0.5625. Thus, we can conclude that the best coordi-
nates are either the first and the third, or the first and
the second.

The result of the application of the greedy resampling
heuristic is shown in Figure 2.d, where both the RP and RQ

embeddings are shown.
Phase 3: Comparison to decide matching records.
Phase 3 is the only phase that actually involves the third
party W. The steps performed by W are the following:

• The vectors of Pstr and Qstr are accessed by means of
a multidimensional index (see [13] for a survey) 2.

• A nearest neighbor search is applied in order to com-
pare the vectors of Pstr and of Qstr; the used distance
metric is the Euclidean distance. Specifically, given a
vector v in Pstr and a vector w in Qstr (recall that
the dimensionality of the vectors is k) the Euclidean
distance between v and w is:

dE(v, w) =

s X

i=1...k

(vi − wi)2

2In the experiments, we have used the KDTree [13] index,
as it is considered one of the most prominent data struc-
ture for indexing multidimensional spaces; the index is used
when comparing a vector against a set of possible matching
vectors.

• Each record in Pstr is compared with each record in
Qstr. For the records p1 in Pstr and q1 in Qstr, the
following decision rule is applied:

((dE(v11, w11) ≤ θ1)
^

(dE(v12, w12) ≤ θ2)
^

. . .
^

((dE(v1n, w1n) ≤ θn))

If the rule is true, p1 and q1 are inserted in two sets,
called PMatch and QMatch, respectively. Similar deci-
sion rules are applied for all the record comparisons.

• The final sets PMatch and QMatch are sent to the two
parties separately. PMatch and QMatch are two struc-
tures similar to Pstr and Qstr, but containing only the
subset of the actual matching records.

Example 3. By computing the (normalized) distances be-
tween the obtained vectors in the embedding space, the third
party W generates the following matching results:

• The nearest neighbor of record 1 of RP is record 3 of
RQ, with normalized distance 0.923. This is a false
positive as academic is not the same as useful.

• The nearest neighbor of record 2 of RP is record 2 of
RQ, with normalized distance 0.858. This is a true
positive.

• The nearest neighbor of record 3 of RP is record 3 of
RQ, with normalized distance 1. This is a true posi-
tive.

4. SECURE SCHEMA MATCHING
In this section, we adopt hypothesis 2: the two parties can

store records to be matched in a different way so that an
integration step must be performed. We propose a schema
matching protocol suitable for a general data integration
scenario, that involves the third party W for providing a
global schema on which the two parties P and Q map their
own local schemas. The final result of the protocol is the
computation of the set of the common attributes used by P
and Q for storing their respective records.

Let SW be the global schema owned by W expressed in
a language LW over an alphabet αW . Let SP and SQ the
source schema owned by the two parties; each schema can
be in general expressed in a language different from LW .
The protocol does not reveal to P any schema information
about SQ, and similarly it does not reveal to Q any schema
information about SP . The protocol only reveals to the third
party the number of attributes that are common to SP and
SQ (see Section 6).

Each party maps its local schema to the global schema
owned by W. Specifically, each party defines mapping ex-
pressions that specifies how SP (respectively SQ) elements
are related to SW elements. For instance, if SW is a schema
Customer(Name,DateofBirth,ResidenceAddress) and SP

is a schema Cust(FirstName,LastName,DateofBirth),
then an example of mapping expression is given by
concatenate(Cust.FirstName,Cust.LastName)

=Customer.Name [22]. By applying the mapping expressions,
each party obtains a matched schema, S′P and S′Q respec-
tively, which is expressed in the global schema language LW .

Protocol 1: Privacy Preserving Schema
and Data Matching

Input: SP ,SQ

Output: PMatch,QMatch

(1) P generates S′P (D1, . . . , Ds) from the
mapping of SP with SW (D1, . . . , DL);

(2) Q generates S′Q(D1, . . . , Dx) from the

mapping of SQ with SW (D1, . . . , DL);
(3) P and Q negotiate: secret key k; set

of threshold values {θ1 . . . θL}; em-
bedding parameters (string length Lx,
number of strings N , comparison func-
tion dist);

(4) P sends HP =
(h(D1, k), . . . , h(Ds, k)) to W;

(5) Q sends HQ =
(h(D1, k) . . . , h(Dx, k)) to W;

(6) W computes the intersection HP ∩
HQ = (h(D1, k), . . . , h(Di, k));

(7) P constructs the embedded space by:
generation of a set G of N random
strings of length Lx; building the ref-
erence sets (S1, . . . , Sz);

(8) P embeds S′P (D1, . . . , Ds) and per-
forms dimensionality reduction from z
to k;

(9) P sends S1, . . . , Sk to Q;
(10) Q embeds S′Q(D1, . . . , Dx);

(11) P constructs Pstr by key-hashing at-
tributes of the schema with k;

(12) P sends Pstr to W;
(13) Q constructs Qstr by key-hashing at-

tributes of the schema with k;
(14) Q sends Qstr to W;
(15) W computes the intersection Pstr ∩

Qstr, on the values of the attributes
in HP ∩HQ;

(16) W builds Pmatch and Qmatch in-
cluding matching records padded with
attribute values not involved in the
matching;

(17) W sends Pmatch to P; W sends
Qmatch to Q.

In this way, W has the possibility of intersecting the sets
of attributes of S′P and S′Q. We use the universal relation
approach [18] to model data at the third party W: the third
party exports its global schema in the form of a unique
global relation SW (D1, . . . , DL); given the set of attributes
of the global relations, the schema exported by W is the
union of all attributes of all global relations. The matched
schema S′P and S′Q will thus consist each of a single relation
S′P (D1, . . . , Ds) and S′Q(D1, . . . , Dx) respectively.

The protocol consists of the steps shown in Figure 1.b.
First, P and Q negotiate a secret key k unknown to W (step
1). The purpose of the key is to avoid privacy breaches
by the third party, possible in a honest-but-curious con-
text. Then, both P and Q map their own schemas onto
SW (D1, . . . , DL) by (i) designing the mapping expressions
and (ii) generating the matched schemas S′P (D1, . . . , Ds)
and S′Q(D1, . . . , Dx) (see steps 2.a and 2.b in Figure 1.b).
Besides publishing SW , the third party also publishes a
hash function h, accessible to both P and Q. This func-
tion is used in conjunction with the exchanged key, by
both P and Q, to encrypt their own attribute names.
Specifically, P and Q use keyed-hashing to encrypt the at-
tributes of the schemas S′P and S′Q. Therefore, P gen-
erates the set HP = (h(D1, k), . . . , h(Ds, k)), Q generates

HQ = (h(D1, k) . . . , h(Dx, k)), and then both parties send
such encrypted schemas to W (see steps 3.a and 3.b of Fig-
ure 1.b). Finally, W computes the intersection HP ∩HQ =
(h(D1, k), . . . , h(Di, k)) (step 4).

Notice that for the purpose of our problem statement, it
is not necessary for the third party W to send the result of
the intersection to the two parties P and Q. However, the
schema matching protocol could be also executed indepen-
dently on the instance matching one, and in that case the
set of matching attributes is sent to the parties that can
decrypt it on the basis of the known key k.
Discussion. The hypothesis of the third party publishing the
global schema independently of the sources is the same per-
formed by several concrete standardization initiatives. Cur-
rent approaches to Business-to-Business (B2B) [20, 24] and
eGovernment [25] are based on the definition of a-priori cat-
alogues of standard processes and data schemas to be used
for data and process integration on the Internet. Clearly, the
philosophy underlying such efforts is that: (i) commonly
agreed upon reference schemas (either for processes or for
data – the focus of our work) can be defined in specific verti-
cal sectors without knowing the exact details of the possible
organizations adopting them in the future; (ii) when specific
organizations adopts them, they only need to map and con-
vert their internal systems to the predefined schemas, with-
out a preliminary phase in which such global schemas are
negotiated among the participating organizations. During
this mapping phase, as organizations operate in a coopeti-
tive environment, they do not want to expose to others the
internals of their systems. This is also why the standards
are a-priori predefined, in order not to be biased towards no
one organization possibly adopting them in the future.

5. OVERALL PROTOCOL
In this section, we illustrate the pseudo-code of the over-

all protocol solving the problem statement under the more
general assumptions of hypothesis 2 (see Protocol 1). The
protocol consists of the sequential application of the schema
matching protocol and of the data matching protocol.

The following modifications to the data matching protocol
are required:

• The relations that are input to the instance matching
part of the protocol are S′P (D1, . . . , Ds) (line 8) and
S′Q(D1, . . . , Dx) (line 10). Notice that the information
on the common attributes D1, . . . , Di is owned only by
the third party (line 6).

• The two parties P and Q agree on a set of thresh-
old values θ1, . . . , θL related to the global schema
SW (D1, . . . , DL). Then, the third party actually uses
only the threshold values needed for comparing the
common attributes.

• The structure Pstr (and similarly Qstr), which is shown
in Figure 3, will have the attribute names properly
encrypted with the key shared by the two parties in
the step 1 of the schema matching protocol (first row
in Figure 3), in order to prevent W from seeing such
names in plain.

• The results Pmatch and Qmatch are recomposed by the
third party before sending them back, by adding also
attributes not common to the parties (and therefore
not used in the matching).

The final outcome of the protocol for a party is the disclo-
sure of which of its own records are shared by the other party
too. This scenario implies that each party knows the status
of matching of one’s own data set with the one of the other
party, but no private data are revealed at all. We plan to
investigate how merging matched records as a further result
of the matching process in future work.

6. SECURITY ANALYSIS
In this section we analyze the security properties of

the protocol described in the previous sections. The
elements involved in the security analysis are: length
of database records (Len), database size (DBsize), set
of matching records (RecMatch), set of matching at-
tributes (AttrMatch), and number of matching attributes
(AttrMatchSize).

The number of matching attributes (AttrMatchSize) is
an element the privacy of which needs to be controlled, in
that it is a degree of how much the matching entity repre-
sentations by the two parties are similar. Conversely, the
number of matching records is not an element that needs
to be controlled as it is an output of the protocol (being
the set of matching records revealed to the two parties).
In the protocol, there are some steps in which though ex-
act elements are not revealed, a relationship exists between
them and other known elements. Specifically, given such re-
lationships, an upperbound (or lowerbound) estimation of
the elements can be performed. Therefore, we distinguish
three different values for the disclosure of a given element:
(i) disclosed; (ii) bounded and (iii) not disclosed.

The following lemmas state the behavior of the protocol
with reference to the above parameters. Recall that S′P
and S′Q are the relations owned by the two parties that are
subject to the instance matching protocol.

Lemma 1. Len of S′P and S′Q is: (i) not disclosed to the
third party W; (ii) bounded by the two parties P and Q.

Proof. (Sketch) (i) follows directly by the fact that W
is not involved in the step of building the embedding space.
(ii) derives from the fact that the length of both S′P and S′Q
records can be bounded by the length Lx of the strings used
for the embedding construction.

Lemma 2. DBSize of S′P and S′Q is: (i) disclosed to the
third party W; (ii) bounded by the two parties P and Q.

Proof. (Sketch) (i) follows directly from the fact that
the third party W can derive DBSize of S′P and S′Q from
Pstr and Qstr which have exactly the same size of S′P and
S′Q (lines 12 and 14 of the protocol). (ii) follows by observing
that DBSize is bounded by the parties because it depends
on the number N of random strings used to generate the
embedding.

Lemma 3. AttrMatchSize of S′P and S′Q is: (i) disclosed
to the third party W; (ii) not disclosed to the two parties P
and Q.

Proof. (Sketch) The size of the intersection
(D1, . . . , Ds) ∩ (D1, . . . , Dx), that is, AttrMatchSize, is
disclosed to the third party that actually computes the
intersection between their encrypted value (line 6 of the
protocol). On the other hand, given the protocol steps, W

is in charge of recomposing Pstr and Qstr for the purpose of
not revealing AttrMatchSize (line 16 of the protocol), thus
proving (ii).

On the basis of the above lemmas, we state the following
theorem on the security of the schema matching protocol
proposed in the paper.

Theorem 1. Given the schemas S′P and S′Q, owned by
parties P and Q respectively, the schema matching protocol
finds the attributes common to two the schemas with the fol-
lowing assurance: (i) AttrMatch is not disclosed to W; (ii)
AttrMatch is not disclosed to P and Q; (iii) AttrMatchSize

is not disclosed to P and Q.

Proof. (i) follows by the used of key-hashing for encrypt-
ing the attributes to be sent to W (see lines 4, 5, 11, 13).
(ii) is a consequence of the protocol steps (the intersection
is not sent to the parties by W) and (iii) follows from the
lemma 3.

As far as the security of the data matching protocol, the
following theorem holds.

Theorem 2. Given the two relations S′P (D1, . . . , Ds)
and S′Q(D1, . . . , Dx), owned by parties P and Q respectively,
the data matching protocol finds the matched records between
the two relations with the following assurance: (i) RecMatch

is not disclosed to W; (ii) S′P − RecMatch is not disclosed to
Q and S′Q − RecMatch is not disclosed to P; (iii) DBSize is
disclosed to W and bounded by P and Q.

Proof. (Sketch) (i) is proved by considering that W can-
not infer the plain values of records of S′P and S′Q, as the
third party only sees the vector representation of such val-
ues. This representation is the result of some protocol steps
that make unfeasible for the third party to learn the original
values, namely: generation of the embedding on the basis of
random strings, the number and length of which are only
known by P and Q (see lines 1 and 7 of the protocol); ran-
dom choice of the reference sets for the embedding (see line
7 of the protocol and lemma 1); heuristics-based selection of
the vector space coordinates (see line 8 of the protocol). (ii)
is proved by the fact that both P and Q never obtain the
data sets of the other party during the protocol, neither in
a plain representation nor in the embedded representation.
(iii) follows from lemma 2.

7. EXPERIMENTS
We performed an extensive experimental evaluation of our

protocol, with three distinct goals:

• Finding the parameters necessary for building the em-
bedded space and testing the quality of the embedding.
We experimentally derived several embedding param-
eters and we analyzed the distortion of the embedding
resulting from the modified version of the SparseMap
method that we used.

• Illustrating the effectiveness of the data matching pro-
tocol. We analyzed the effectiveness of the record
matching in terms of the classical recall and precision
metrics and we compared the obtained results with re-
spect to the same record matching performed in the
original space.

• Measuring the efficiency of the data matching proto-
col. We compared our method to the time performance
of the secure protocol proposed by Agrawal et al [2]
which, differently from our method, performs exact
matching. Finally, we also show the time performance
of our method when compared to the record matching
performed in the original space.

We used three real datasets to evaluate our protocol.
The first dataset, referred to as dataset 1, rep-

resents a British Columbia voters’ list (available at
http://www.rootsweb.com/∼canbc/vote1875/). From
such data set, we extracted first and last names, and gener-
ated two data sets of 1000 records each. The dataset con-
tains roughly 500 duplicate records (errors in these dupli-
cates were introduced synthetically).

The second dataset, referred to as dataset 2, contains per-
sonal data by an Italian public administration. It consists
of two tables of sizes 7846 and 7550 respectively, with 6684
duplicates already identified. The fields used for the exper-
iments are first name, last name, and the year of birth of
individuals.

The third dataset, referred to as dataset 3, contains infor-
mation about businesses and is owned by an Italian public
administration agency. The size of this data set is about
20.000 records. The duplicates of this data set were ar-
tificially generated as it has been mainly used to test the
efficiency of the method, by extracting from it several data
samples of different sizes.

We conducted out experiments on a 3.00GHz Pen-
tium 4 Processor running Windows XP, with a RAM
of 1GB. We chose Java 1.5 to implement the experi-
ments, and to leverage open source libraries available on-
line. In particular, we used Secondstring library (avail-
able at http://secondstring.sourceforge.net/) that
provides a variety of similarity metrics. For index-
ing the embedded space we used a KDTree implemen-
tation (available at http://www.cs.wlu.edu/∼levy/kd/).
We also used Java Cryptography Extension (available
at http://java.sun.com/products/jce/) for implementing
the exact private matching protocol described in Agrawal et
al [2].

7.1 Building the Embedding Space
As discussed in Section 3, our method builds the embed-

ded space starting from a set of randomly generated strings,
in order to meet the privacy requirements of our protocol.
In this section, we illustrate a set of experiments that shows
how to set the parameters necessary for building the em-
bedded space in order to obtain high quality of the resulting
embedding.

We have considered how to choose the number and the size
of the random strings necessary to build the reference sets
of the embedding. We recall that the relationship between
the number of random strings Ns and the dimensionality d
of the space is such that d is approximated by (log2(Ns))

2.
Therefore, Ns can be easily determined by an appropriate
choice of the dimensionality. We evaluate the quality of the
embedding with respect to the stress parameter (as defined
in the greedy resampling pseudo-code in Section 3), measur-
ing the distortion of the embedding, and with respect to the
recall and precision metrics. We report the results obtained
for dataset 1.

Figure 4.a reports stress against several dimensionalities

of the space for different string lengths. As expected, the
lowest stress value is reached in correspondence of higher
dimensionality values. Increasing the string length also re-
sults in a lower distortion; for data set 1 the average length
of the strings to be embedded is about 20. On the basis of
further experiments performed on dataset 2, we concluded
that a general guideline is to use random strings of length
which is approximately equal to the length of elements in the
data set to be embedded. Moreover, for dataset 2, which in-
cludes the numeric field birth of date, we experimented the
usage of random generated strings composed by numbers
and alphabetic characters, that resulted in lower stress val-
ues. Therefore, it is appropriate to generate random strings
sharing a similar alphabet with the data to be embedded.

In Figure 4.b, a second experiment shows how preci-
sion and recall values vary depending on the dimensional-
ity for different string lengths. Recall values do not vary,
instead precision increases with dimensionality values and
with string lengths. On the basis of such experiments,
for dataset 1 the chosen embedding parameters are: string
length equal to 20, and dimensionality equal to 20 (corre-
sponding to a number of random strings equal to 23).

7.2 Testing the Effectiveness of the Data
Matching Protocol

We measured the effectiveness of the data matching proto-
col by comparing precision and recall of our method, which
operates in the embedded space, to precision and recall ob-
tained in the original space. We performed the effectiveness
experiments on datasets 1 and 2; for both datasets we knew
which records were true matches, therefore we could com-
pute recall and precision. The initial experiments were per-
formed with the greedy resampling heuristic disabled, but a
final one shows its impact on recall and precision.

The results for dataset 1 are shown in Figure 4.c, in which
precision and recall are drawn when varying the similarity
threshold. Recall values are very similar in the two cases.
This is actually a predictable behavior as the mapping we
perform is contractive, which implies that the distances in
the embedding space lower-bound the corresponding dis-
tances in the original space. Precision starts to increase for
threshold values in the original space which are lower than
the ones in the embedded space. Intuitively, this behavior
can be also motivated by contractiveness, which forces to
have more discriminating thresholds, i.e. with higher val-
ues. However, precision of our method reaches very high
values.

The results for dataset 2 are shown in Figure 4.d. The
property for precision to reach good values with lower
threshold in the original space is still valid. What is inter-
esting to note is that if we compare Figure 4.c and Figure
4.d, the relative difference between the two precision curves
in the original and in the embedded space is very similar for
the two datasets.

We have also tested the precision and recall performance
when applying the greedy resampling heuristic to dataset 2.
In such a case, we actually apply the full SparseMap with
the variant ensuring contractiveness, so high values for recall
are still guaranteed. However, as shown in Figure 5, the pre-
cision is much lower, not reaching 0.4. This result suggests
a careful use of the heuristics by balancing the tradeoff be-
tween a more efficient building of the space and its quality.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30 35

Dimensionality

S
tr

es
s

String Length = 10
String Length = 15
String Length = 20

(a) Embedded space parameters

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

Dimensionality

R
ec

al
l a

n
d

 P
re

ci
si

o
n

Recall String Length=10
Recall String Length=15
Recall String Length=20
Precision String Length=10
Precision String Length=15
Precision String Length=20

(b) Quality of embedded space

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Threshold

R
ec

al
l a

n
d

 P
re

ci
si

o
n

Recall Original
Precision Original
Recall Embedded
Precision Embedded

(c) Effectiveness dataset 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Threshold

R
ec

al
l a

n
d

 P
re

ci
si

o
n Recall Original

Precision Original
Recall Embedded
Precision Embedded

(d) Effectiveness dataset 2

0

200

400

600

800

1000

1200

1400

1600

0 5000 10000 15000 20000 25000

Dataset Size

T
o

ta
l E

xe
cu

ti
o

n
 T

im
e

(s
ec

s)

Total Time Our Method
Total Time Agrawal's Method

(e) Time performance vs. Agrawal’s Method

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5000 10000 15000 20000 25000

Dataset Size

T
o

ta
l E

xe
cu

ti
o

n
 T

im
e

(s
ec

s)

Our Method
Record Matching in the Original Space

(f) Time performance vs. Record Matching in
the Original Space

0

5

10

15

20

25

0 5000 10000 15000 20000 25000

Dataset Size

M
at

ch
in

g
 T

im
e

(s
ec

s)

(g) Time performance: matching time

0

100

200

300

400

500

600

700

800

0 5000 10000 15000 20000 25000

Dataset Size

E
m

b
ed

d
in

g
 T

im
e

(s
ec

s)

(h) Time performance: embedding time

Figure 4: Experiments on the embedding space and on the effectiveness and efficiency of the data matching
protocol

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Threshold

R
ec

al
l a

n
d

 P
re

ci
si

o
n

Recall Original
Precision Original
Recall Embedded
Precision Embedded

Figure 5: Effectiveness dataset 2 with greedy resam-
pling

7.3 Testing the Time Efficiency of the Data
Matching Protocol

The efficiency experiments were performed on data set 3
by considering samples of different sizes.

We identified three different time features to evaluate,
namely: (i) indexing time, that is, the time to build the
index; (ii) matching time, that is, the time to perform the
actual comparison and matching decision and (iii) embed-
ding time, that is, the time to build the embedding space.
The indexing time is not significant when compared to the
other two times. In Figure 4.e, we report the matching time
for varying values of the data set dimension. The time in-
creases linearly with the size of the data set, and for com-
paring 20000 records such time is lower than 25 seconds.
The time necessary for embedding samples of different sizes
of dataset 3 is shown in Figure 4.f. Such time also exhibits
a good behavior being approximately linear.

We have compared such time performance with the time
performance of the algorithm proposed by Agrawal et al in
[2] (called in the following Agrawal’s method). This algo-
rithm performs a privacy preserving intersection of two data
sets, by assuming an exact matching of data. Our method
is more general in that it allows an approximate matching.
However, the purpose of the comparison is to show that bet-
ter time performances can be obtained without the usage of
cryptographic techniques. In order to perform such a com-
parison, we coded Agrawal’s method by using SHA-512 hash
function and an implementation of Pohilig-Hellman commu-
tative encryption scheme. We considered a total time for the
execution of the Agrawal’s method, by taking into account
two major components, namely the encryption time and the
ordering time.

In Figure 4.g, we compare the total time of our method
with Agrawal’s method total time. The total time of our
method results from the sum of the embedding time and
of the matching time. Though our algorithm performs ap-
proximate matching, the fact that we do not use any cryp-
tographic technique allows us to achieve twice better time
performance than Agrawal’s method.

Finally, we have compared the total time of our method
with the time required to perform a record matching in the
original space. Record matching requires N2 comparison,
being N the size of each dataset to compare. We have con-
sidered this worst case performance, though we are aware
that such number of comparisons is typically reduced to

O(KN) (with K << N). This is because our objective
is not to propose a more efficient record matching method,
but a privacy preserving one. In Figure 4.h, we report the
total time of our method and of the record matching in the
original space. Notably, we do obtain an efficient record
matching without any additional effort.

8. RELATED WORK
The record matching problem (also known as record link-

age) has been studied for more than five decades (see the
recent survey [10]).However, few methods for private record
matching have been investigated. Some initial approaches
are motivated by the strict privacy requirements of e-health
applications [21, 8]. The work which is closely related to ours
is by Al Lawati et al. [4], that propose a third party based
protocol. Their solution is based on: (i) the usage of the
TFIDF (term frequency-inverse term frequency) compari-
son function, by reducing it to a scalar product of vectors
which can be computed separately by each party; (ii) a se-
cure blocking scheme. The approach has the disadvantage to
work only for a specific comparison function; also, as the fo-
cus is mainly on efficiency, the effectiveness of the approach
has not been assessed. Conversely, our approach can be used
with different comparison functions, it has a proved effec-
tiveness and guarantees privacy preservation also at schema
level.

In addition to the above approaches, there are three major
areas that are closely related to our work, even though no
work in such areas addresses our exact problem: secure set
intersection, secure string comparison, private data sharing.

Several approaches have investigated the secure set inter-
section problem (see [12] and [16] for a survey). Secure set
intersection methods deal with exact matching and are too
expensive to be applied to large databases due their reliance
on cryptography. Furthermore, these protocols deal with
the intersection of sets of simple elements, and are not de-
signed for exploiting the semantics behind database records.
The latter is an important feature of our protocols.

The problem of securely comparing strings has been ad-
dressed by homomorphic encryption schemes, characterized
by the property that E(a) ∗ E(b) = E(a + b). For example
Atallah et al. [5] proposes an algorithm for comparing se-
quences based on such schemes. While such algorithm works
for sequence similarity, like DNA sequence comparison, the
communication cost of this algorithm, proportional to the
product of the sequence lengths, is prohibitive for databases,
in that it would require for a database of n records to apply
the protocol to compare each attribute value of each of the
n records. Ravimukar et al. [23] proposes a method to com-
pute distance metrics securely, when they can be expressed
in terms of weights to be computed separately by the parties,
like TFIDF. Because such solution relies on cryptographic
techniques, it is not efficient and appropriate for databases.

Agrawal et al. [2] formalizes a general notion of private
information sharing across databases. Such notion relies on
commutative encryption techniques and has opened the way
to other related protocols [11, 1]. These approaches, how-
ever, do not deal with approximate matching in that they
focus on exact string matching for the purpose of query an-
swering. In addition, in Section 7 we have proved the supe-
rior time performance of our data matching protocol when
compared to Agrawal et al. [2]. In [26, 3], there is the investi-
gation of possible malicious behaviors by the parties involved

in an information sharing setting in which only necessary
information must be disclosed. From the data management
area in the data mining community, there are several con-
tributions regarding how to preserve privacy in distributed
contexts [9]; such works are mainly based on perturbing the
original data and at the same time achieving correct data
mining results.

9. CONCLUSIONS
The paper describes a protocol for privacy-preserving

record matching between two parties that can have different
schemas and privacy requirements also at schema level. The
protocol does not rely on complex cryptographic techniques
that are proven to be inefficient. Instead, it exploits the
novel idea of obtaining privacy by embedding the records of
each of the two parties in a vector space. We have proved the
security of the protocol by a detailed analytical analysis and
its effectiveness and efficiency by means of experimental val-
idation. The experimental evaluation has shown the possi-
bility to reach an almost 100% recall, and very high levels of
precision that are comparable with the ones achieved when
performing record matching in the original space. Moreover,
the time performance experiments have shown the superi-
ority of our protocol when compared to methods that rely
on cryptography for privacy preservation. We believe that
our protocol could pave the way for more efficient secure set
intersection protocols for database applications.

Future work will address more complex data integration
scenarios. First, we will consider scenarios with more than
two parties. In this extension, there are several issues that
should be carefully designed and evaluated; for instance,
how to optimize the step of building the embedding space.

Various kind of assumptions can also be made on the be-
havior of the parties involved in the protocol, such as intro-
ducing possible malicious behaviors by some of the parties.

Moreover, we will investigate the possibility of using em-
bedding methods different from SparseMap in order to eval-
uate their suitability for privacy preserving record match-
ing, and compare them with the results obtained with
SparseMap (for instance, in terms of the complexity for
building the embedded space and the resulting quality of
the space itself).

Finally, an important feature of our protocol is that it can
be applied to database with novel data types like images,
DNA sequences, proteins etc. We plan to investigate the
actual performance of our protocol when applied to these
data types.
Ackowledgements. This work was supported by the US
grants NSF-0430274 and NSF-ITR 0428168, a Lilly Endow-
ment grant, a NAVSEA/NSWC CRANE grant, a US DHS
(PURVAC) grant, by the sponsors of CERIAS and by the
Italian MIUR project ESTEEM.

10. REFERENCES
[1] R. Agrawal, D. Asonov, M. Kantarcioglu, Y. Li,

Sovereign Joins, Proc. ICDE 2006.

[2] R. Agrawal, A. Evfimievski, R.Srikant, Information
Sharing Across Private Databases, Proc. SIGMOD
2003.

[3] R. Agrawal, E. Terzi, On Honesty in Sovereign
Information Sharing, Proc. EDBT 2006.

[4] A. Al-Lawati, D. Lee, P. McDaniel, Blocking-aware
Private Record Linkage, Proc. IQIS 2005.

[5] M.J. Atallah, F. Kerschbaum, W. Du, Secure and
Private Sequence Comparisons, Proc. WPES 2003.

[6] J. Bourgain, On Lipschitz Embedding of Finite Metric
Spaces in Hilbert Space, Israel Journal of Mathematics
52 (1985), no. 1-2, 46–52.

[7] R. Canetti, U. Feige, O. Goldreivh, M Naor,
Adaptively Secure Multi-party Computation, Proc.
STOC 1996.

[8] T. Churces, P. Christen, Some Methods for
Blindfolded Record Linkage, BMC Medical Informatics
and Decision Making 4 (2004), no. 9.

[9] C. Clifton, M. Kantarciouglu, X. Lin, J. Vaidya,
M. Zhu, Tools for Privacy Preserving Distributed Data
Mining, SIGKDD Explorations 2 (2003), no. 4, 28–34.

[10] A.K. Elmagarmid, G.I. Panagiotis, S.V. Verykios,
Duplicate Record Detection: A survey, IEEE TKDE
19 (2007), no. 1.

[11] F. Emekci, D. Agrawal, A. El Abbadi, A. Gulbeden,
Privacy Preserving Query Processing using Third
Parties, Proc. of ICDE 2006.

[12] M.J. Freedman, K. Nissim, B. Pinkas, Efficient
Private Matching and Set Intersection, Proc.
EUROCRYPT 2004.

[13] V. Gaede, O. Gunther, Multidimensional Access
Methods, ACM Computing Surveys 30 (1998), no. 2.

[14] G.R. Hjaltason, H. Samet, Properties of Embedding
Methods for Similarity Searching in Metric Spaces,
IEEE TPAMI 25 (2003), no. 5.

[15] L. Jin, C. Li, S. Mehrotra, Efficient Record Linkage in
Large Data Sets, Proc. of DASFAA 2003.

[16] L. Kissner, D.Song, Private and Threshold
Set-intersection, Tech. Report CMU-CS-05-113, 2005.

[17] N. Koudas, S. Sarawagi, D. Srivastava, Record
Linkage: Similarity Measures and Algorithms, Proc.
SIGMOD 2006.

[18] D. Maier, J.D. Ullman, M.Y. Vardi, On the
Foundations of the Universal Relation Model, ACM
TODS 9 (1984), no. 2, 283–308.

[19] M. Naor, B. Pinkas, Oblivious Transfer and
Polynomial Evaluation, Proc. STOC 1999.

[20] OASIS, e-Commerce Technical Committee,
http://www.oasis-open.org/.

[21] C. Quantin, H. Bouzelat, F. Allaert, A. Benhamiche,
J. Faivre, L. Dusserre, How to Ensure Data Security
of an Epidemiological Follow-up: Quality Assessment
of an Anonymous Record Linkage Procedure, Int.
Journal of Medical Informatics 49 (1998), no. 1.

[22] E. Rahm, P.A. Bernstein, A Survey of Approaches to
Automatic Schema Matching, VLDB Journal 10
(2001), no. 4, 334–350.

[23] P. Ravikumar, W. Cohen, S.E. Fienberg, A Secure
Protocol for Computing String Distance Metrics,
WPSADM 2004 (at ICDM 2004).

[24] RosettaNet,
http://portal.rosettanet.org/cms/sites/RosettaNet/.

[25] UK Gov Talk, e-GIF,
http://www.govtalk.gov.uk/schemasstandards/egif.asp.

[26] N. Zhang, W. Zhao, Distributed privacy preserving
information sharing, Proc. VLDB 2005.

