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Abstract. An intelligent annotation-based video data model
called Smart VideoText is introduced. It utilizes the concep-
tual graph knowledge representation formalism to capture
the semantic associations among the concepts described in
text annotations of video data. The aim is to achieve more
effective query, retrieval, and browsing capabilities based
on the semantic content of video data. Finally, a generic
and modular video database architecture based on the Smart
VideoText data model is described.
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1. Introduction

Video data, with its unique characteristics such as huge size,
rich content, and its temporal and spatial nature, has posed
many interesting challenges to the multimedia database re-
search community. One critical problem is the modeling of
video data for effective content-based indexing and user ac-
cess capabilities such as querying, retrieval and browsing.

Video data can be modeled based on its visual content
(such as color, motion, shape, and intensity) [13], audio
content [2, 19, 24] and semantic content in the form of
text annotations [9]. Because machine understanding of the
video data is still an unsolved research problem, text an-
notations are usually used to describe the content of video
data according to the annotator’s understanding and the pur-
pose of that video data. Although such content descriptions
may be biased, incomplete and inaccurate, they still provide
much of semantic content that cannot be obtained by current
computer vision or voice recognition techniques. In general,
computer vision techniques may aid in answering the ques-
tion “what is in the video?” but cannot answer questions
such as “what is happening in the video?” or “what is the
video trying to tell us?”. For example, the background infor-
mation of a video stream cannot be obtained directly from
the video but needs to be annotated.

� Vlahavas was on sabbatical leave at Purdue University when this work
was carried out.

Video annotation is suitable for applications such as
distance learning and news video databases, but is inade-
quate for applications that require direct visual feature-based
matching, such as face recognition. Visual content-based
models are more appropriate for such applications [4].

Current video data models (such as Informedia [11],
VideoText [7], VideoSTAR [9], and the algebraic model
[30]), whether they use the video annotation layering (strati-
fication) approach [7, 9, 30] or the keyword-based annotation
approach [11] to represent video semantics, fail to model
semantic relationships among the concepts expressed in the
video. The importance of capturing video semantic associ-
ations lies in the fact that it can greatly improve the effec-
tiveness of video querying by providing knowledge-based
query processing. This is due to the fact that human be-
ings always have multiple expressions or terms for the same
or similar semantics. For example, “currency” and “euro”
do not match syntactically but match conceptually. Further-
more, video semantic associations can be used for flexible,
knowledge-based video browsing. Existing visual content-
based video browsing approaches (e.g., see [22, 29, 32]) are
mostly static. Visual representations such as the Video Scene
Transition Graph [32] or salient images [29] can be precom-
puted using scene analysis and other image processing tech-
niques. Video browsing based on semantic associations and
background knowledge is far more flexible in the sense that
navigation paths can be tailored easily to the specific needs
of the user or the application. Despite its importance, the
representation of semantics and semantic associations among
video annotations has hitherto not been fully exploited.

In this paper, we introduce Smart VideoText, a
knowledge- and annotation-based video data model. The
goal is to achieve more effective querying, retrieval, and
browsing capabilities based on the semantic associations that
exist in the video data. Effectiveness is assessed by the de-
gree of relevance of the query results to what the user has
in mind. In this paper, this goal is achieved by integrating
the VideoText video data model [9, 10] with the concep-
tual graph (CG) knowledge representation formalism [26] to
model the semantic associations among video annotations.
The semantic association knowledge, as well as additional
information about video data, is encoded as CGs. The CGs
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are accompanied with a proper inference mechanism to sup-
port more flexible and effective video data access capabili-
ties.

The rest of this paper is organized as follows. Section
2 introduces the current trends in information retrieval sys-
tems, the CG knowledge representation formalism, and a
knowledge-based information retrieval model based on this
formalism. Section 3 gives a summary of the current ap-
proaches to video data modeling. Section 3 also motivates
and outlines our approach. The Smart VideoText data model
is introduced in Sect. 4. In Sect. 5, different video data access
methods supported by the model are discussed, with some
examples. A system architecture based on the Smart Video-
Text model is proposed in Sect. 6. Finally, Sect. 7 contains
concluding remarks and suggestions for future work.

2. Knowledge-based information retrieval

2.1. Trends in information retrieval

Information retrieval (IR) systems retrieve textual documents
using a partial match between a user query and a proper doc-
ument representation. There are three fundamental issues in
building an IR system: (1) the choice of document repre-
sentation; (2) the formulation of a query; and (3) a suit-
able matching function that determines the extent to which
a document is relevant to a query. Different categories of IR
models have been developed based on how these three is-
sues are addressed in an IR system [5]. There are four main
IR models: the Boolean model, the cluster-based model, the
probabilistic model, and the vector-space model [18, 21, 31].
The efficiency of a model is usually determined by the so-
called precision and recall measures. Precision is defined as
the proportion of a retrieved set that is actually relevant. Re-
call is the proportion of all the relevant documents that are
actually retrieved.

Recent research suggests that significant improvements
in retrieval performance require techniques that, in some
sense, “understand” the contents of the documents and the
queries and can thus infer probable relationships between
them. From this point of view, information retrieval is an
inference process. The aim of the inference is to facilitate
flexible matching between the terms or the concepts men-
tioned in the queries with those contained in the documents.
The poor match between the vocabulary used to express
queries and that used in the documents appears to be a ma-
jor cause of poor recall. The recall of an IR model can be
improved by applying domain knowledge in the conceptual
representation and query processing without significantly de-
grading the precision.

One knowledge-based approach to information retrieval
is described in [12] where the CG knowledge representa-
tion formalism is used to encode the semantic associations
among the various terms within a collection of text docu-
ments. This approach leads to a knowledge-based hypertext
model in which the links between text documents are im-
plicitly defined through the relationships among the entries
(concepts, conceptual relations, concept-type hierarchy etc.)
of the knowledge base (KB). This approach can be viewed
as a knowledge-based IR model (KBIR). A more elaborated

approach on using CGs for KBIR is described in [17], where
CGs are stored in Web-accessible documents and provide se-
mantic knowledge about them.

2.2. Conceptual graphs: primitives and definition

The elements of CG theory [26] are concept-types, concepts,
relation-types and relations. Concept-types represent classes
of entity, attribute, state and event. Concept-types can be
merged in a lattice whose partial ordering relation can be in-
terpreted as a categorical generalization relation. A concept
is an instantiation of a concept-type and is usually denoted
by a concept-type label inside a box. To refer to specific in-
dividuals, a referent field is added to the concept – [book:*]
(a book), [book:{*}@3] (three books), etc. Relations are in-
stantiations of relation-types and show the relation between
concepts. They are usually denoted as a relation label in-
side a circle. Each relation is constrained to which concepts
it can connect. A CG is a finite, connected, bipartite graph
consisting of concept and relation nodes (Fig. 1). Each re-
lation is linked only to its requisite number of concepts and
each concept to zero or more relations. CGs represent in-
formation about typical objects or classes of objects in the
world and can be used to define new concepts in terms of
old ones.

In the CG formalism, every context (situation, proposi-
tion, etc.) is a concept. Thus, contexts are represented as
concepts (contextual concepts) whose referent field contains
a nested CG. A number of operations (restriction, join, con-
traction, expansion, etc.) are also defined on CGs, by which
one can derive allowable CGs from a canonical basis [26].
The canonical basis is a set of CGs from which all other CGs
are derivable and it is manually constructed. The canonical
formation rules enforce constraints on meaningfulness; they
do not allow nonsensical graphs to be created from mean-
ingful ones. A maximal join is a join of two CGs followed
by a sequence of restrictions, internal joins and simplifica-
tions so that the maximum amount of matching and merging
of the original graphs is achieved. Deduction with CGs is
performed via a top-down resolution algorithm. A query ex-
pressed as a CG can be answered either by a direct matching
with a CG of the KB or an indirect matching using inference
rules.

The CG model of knowledge representation is a practi-
cal way to express a large amount of pragmatic information
through assertions. All of the algorithms defined on CGs are
domain-independent and every semantic domain can be de-
scribed through a purely declarative set of CGs. CGs have
the same model-theoretic semantics as KIF (Knowledge In-
terchange Format) and are currently being standardized.

3. Video data models

A video data model is a representation of video data based on
its characteristics and content, as well as the applications it is
intended for. Some desired capabilities of a video data model
include multi-level video data abstraction; video annotation
support; spatial and temporal relation support; and video data
independence. Video data models can be based on the idea
of video segmentation or video annotation layering [4].
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Fig. 1. CG of the senctence “Mary gives John a
book”

3.1. Segmentation-based models

For a given video stream, segmentation-based models [6,
7, 28] usually use scene change detection algorithms [8] to
parse and segment the video stream into a set of basic in-
dexing units called shots. These shots can be matched or
classified against a set of domain-specific templates (pat-
terns) to extract higher-level semantics (such as CNN Head-
line News) and structures (such as episode) contained in the
video. A hierarchical video stream representation can thus
be built through this process. More recent techniques [23]
perform video optical character recognition on news video
to improve the overall understanding of the content.

The main advantage of these models is that the video in-
dexing process can be fully automated and that they support
visual content-based video data access. However, they also
have some limitations, such as the following:

– Template matching has limited applicability because the
similarity measure between two frame images is, in gen-
eral, ill-defined and limited.

– Video streams that do not have a well-defined structure
suffer from lack of applicability. For example, in a video
stream of a class lecture, where there is no clear visual
structure in terms of shots, segmentation using scene-
change detection algorithms is difficult.

– Very limited semantics can be extracted from the tem-
plate matching process which is application-specific.

3.2. Annotation-based models

The basic idea of the annotation-based models is to layer
the content information (depicted by annotations) on top of
the video streams, rather than segment the video data into
shots. Each annotation is associated with a logical video
segment, which is, in general, a subset of a video stream
and is defined by the starting and ending frame numbers.
Logical video segments can be overlapped or nested [14,
15, 30] in an arbitrary manner.

One of the earliest annotation-based models is the strati-
fication model proposed by Davenport et al. [3, 25], which is
based on the idea of annotation layering. Other annotation-
based models, such as the generic video data model [7] and
the Algebraic Video model [30], have been developed since
then, while recent techniques [16] use hybrid methods (i.e.
segmentation and anotation) for better content-based video
indexing. Annotation layering and the notion of logical video
segment have the following advantages:

– Various video access granularities can be supported, i.e.
annotations can be made on logical video segments of
any length, from a single frame to the whole video
stream.

– The annotation information can be managed by previ-
ously existing, sophisticated information retrieval and
database techniques.

– Various annotations can be linked to the same logical
segment of video data to provide multiple views of the
video data [30].

– Annotations can be added and deleted independent of
the underlying video streams. This supports dynamic and
incremental creation and modifications of video annota-
tions.

– Video retrieval and queries based on semantic content
via manual annotation can be performed at a level that
current image processing and computer vision techniques
cannot achieve.

An annotation-based video data model called VideoText
[9, 10] integrates IR and video databases to support text
video annotations. This model incorporates all possible in-
terval relationships between two logical video segments. It
supports IR operators like AND, OR, and NOT, as well as
user queries that are based on temporal adjacency (ADJ) and
interval relations (OVERLAP, AFTER, etc.) among logical
video segments. The VideoText model is briefly overviewed
in the next section.

3.3. The VideoText data model

The VideoText model [9] is a video data model based on the
concepts of logical video segment and free text video anno-
tations with arbitrary mapping between them. The model is
defined as

V T = (V, T,Map)

where V is a set of video streams vi ∈ ÎV, i = 1, . . . , n, and
also a set of logical video segments; a logical video segment
is a consecutive video frame sequence [f i

j , f
i
j+1, . . . , f

i
k] that

has meaning by itself for indexing and query purposes. A
logical video segment can span from a single frame to the
whole video and can also overlap with other logical video
segments in arbitrary ways. T is a set of video annotations.
A video annotation is a free text segment that describes the
content of the corresponding logical video segment. Map
is the mapping that defines the relationship between logical
video segments and video annotations. The relationship is, in
general, many-to-many, that is, a logical video segment can
correspond to multiple annotations (different user views),
and an annotation can be assigned to several logical video
segments (annotation sharing).

Since V and T are relatively independent of each other,
the model also supports dynamic creation and incremental
updates of the video annotations. The VideoText model can
be used to implement a video database system with a mod-
ular architecture that consists of a video data storage sub-
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system, an information retrieval subsystem and an integrator
subsystem for coordination purposes.

The VideoText model defines a query language that sup-
ports queries based on semantic content (video annotation
documents) of video data. This query language uses Boolean
(AND, OR and NOT), temporal adjacency (ADJ) and inter-
val operators (DURING, OVERLAP, etc.). The VideoText
query language enables users to formulate complicated video
queries which involve temporal characteristics of video data.
One such query expression is:

((((George AND chair) AND (chair ADJ window))
OVERLAPS raining) BEFORE Chicago)

This query expression requires finding video segments
whose annotations contain “George”, “chair”, “window”,
with “chair” appearing before “window”. Also, the segments
should overlap with a video clip that contains the annotation
term “raining” and precedes a video clip with the annotation
term “Chicago”.

3.4. Our approach

Although the VideoText model captures the temporal char-
acteristics of the video data, it does not consider the seman-
tic associations among video annotations. A similar problem
exists in other annotation-based models [7, 30]. Semantic as-
sociation, which refers to the complex relationships between
different concepts and words, is important due to the fact that
human beings tend to express the same or similar mean-
ing in multiple ways or through different concepts and/or
words. Modeling such associations will greatly improve the
effectiveness of the video query, retrieval and browsing ca-
pabilities. For example, a user query such as “Greece AND
currency” is semantically related to a logical video segment
which is annotated with “. . .European Union . . . euro . . . ”.
The reason is that the term “Greece” refers to a country of
the “European Union” and “euro” is one type of “currency”.

Our approach proposed in this paper is a knowledge-
based video data model called Smart VideoText. It extends
the VideoText model by utilizing the CG knowledge rep-
resentation formalism to capture the semantic associations
among the concepts described in the video annotations. This
will enable the basic annotation-based video data model
to provide functionality beyond the simple operator-based
video query and retrieval. Namely, the CG layer allows
hypertext-like browsing and natural language querying on
the video data based on the semantic relationship among
video clips or logical video segments. Furthermore, the ef-
fectiveness of the operator-based retrieval will be greatly
improved because the CG layer will provide semantic term
matching. The details of our approach are presented in the
next section.

4. The Smart VideoText model

This section describes a new video data model, called Smart
VideoText. It extends the ideas of the VideoText model by
applying KBIR techniques to capture and model the semantic
associations in the video annotations and support intelligent

video query, retrieval and browsing based on the semantic
content of the video data.

4.1. Definition of the model

The Smart VideoText model can be defined as a 5-tuple:

SmartV ideoText = (V,Map1, T,Map2,KB)

where V is a set of video streams (vi ∈ V, i = 1, . . . , n) and
also a set of logical video segments. Logical video segments
are denoted as [vi

j−k], where j and k are the starting and
ending frames, respectively, of the logical video segment
which is part of the video stream i. T is a set of video anno-
tations (tim ∈ T ), where tim is a text segment that describes
the contents of the logical video segments of video stream i.
The mapping relation Map1 defines the correspondence be-
tween annotations and logical video segments. For instance,
the mapping Map1([t35], [v3

40−980]) defines a one-to-one re-
lationship between video annotation 5 of video stream 3 and
the frame sequence 40 to 980 of the same video stream.
This mapping is, in general, a many-to-many relationship
since, in this way, an annotation could be shared among log-
ical video segments or a logical video segment could have
multiple annotations (perhaps by different users) to fulfill
different application needs and to reflect possible different
understanding of the same video data. In addition, logical
video segments implicitly define the temporal relationship
between any given two annotations within the same video.
KB is the knowledge base that is encoded according to

the CG knowledge representation scheme. It includes sys-
tem knowledge, application knowledge and domain knowl-
edge. More details are given in Sect. 4.2. Finally, Map2 is a
mapping relation that maps a subset (application knowledge)
of the KB to video annotations T since only this knowl-
edge is directly derived from the video annotations. Map2
is a many-to-many relationship according to the mapping
scheme described in Sect. 4.2.

4.2. Video knowledge representation

The KB in the Smart VideoText model logically consists of
three parts, namely system, application, and domain knowl-
edge:

– System knowledge: this mostly includes rules about how
to handle CGs (formation rules, inference rules, etc.).

– Application knowledge: this is the knowledge related to
the content of the video database; it is derived from video
annotations.

– Domain knowledge: this includes knowledge related to
but not explicitly defined in the video database, such
as the type hierarchy and concept definitions which are
expressed as CGs.

Although all three parts are used during knowledge-
based video access, only the application knowledge is in-
volved in the mapping Map2 since only this knowledge is
explicitly derived from video annotations. The extent of the
automation of this knowledge derivation process varies, and
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Fig. 2. “Mary gave John a book” expressed in the notation of the KB

it is considered, in general, a semi-automatic one [27]. Usu-
ally, well-organized and structured source text documents
allow more automation to be achieved.

The basic building blocks in the knowledge base are
CGs, concepts, and conceptual relations. We present the def-
inition of these terms in the Smart VideoText data model
using a Prolog-like notation. Conceptual Graphs are defined
as predicates of the form:

cg(ID,RelationList)

where ID is a unique identifier associated with this CG
and RelationList is a Prolog list that stores the conceptual
relations of the specific CG.

A conceptual relation is defined as:

cgr(RelationName,ConceptIDs)

where ConceptIDs is a list of concept identifiers that this
specific conceptual relation joins and RelationName is the
name of the conceptual relation.

Concepts are represented as predicates of the form

cgc(ID, V ideoAnnotationIDList, Context,

ConceptName,ReferentF ield)

where ID is a unique identifier associated with this con-
cept; V ideoAnnotationIDList is a Prolog list of iden-
tifiers of the video annotations containing this concept;
Context is either normal for the case of normal concepts or
special for the case of contextual concepts; ConceptName
is the type-name of a normal concept or the context name
of a contextual concept (situation, proposition, etc.); and
ReferentF ield is a Prolog list that holds the referent fields
of the specific concepts as they appear in the various video
annotations. Each referent field is also a Prolog list. For
instance, for the concept [Book:{*}@3] (three books), the
ReferentF ield has the value [{*}@3]. Although this naive
representation of the ReferentF ield argument of the cgc
tuple provides the functionality required to establish the
Smart VideoText model, it can be further improved, since
it is a crucial factor in the calculation of the semantic dis-
tance between two concepts. A more sophisticated approach
can be found in [20].

The concept and the relation type hierarchy are defined
using is a relationships. For example, is a(car, vehicle) de-
notes that car is a kind of vehicle. Note that other kinds of

hierarchical relations such as equivalent, scope and associa-
tion are not required to be explicitly defined since they can
be expressed using relations of the CG formalism.

The above Prolog-like notation can handle complex CGs
without information repetition since concepts are indexed
separately. Furthermore, a CG can be traversed starting from
any of its concepts [20].

It is obvious that the mapping Map2 is included in the
above representations of the various elements in the CG
formalism. The V ideoAnnotationIDList argument in the
cgc/5 predicate is a list that holds this information as tu-
ples of the form va id(i, j). Such a binary tuple in a cgc
means that, the concept represented by this cgc is mapped
to the video annotation j of the logical video stream i. This
argument has the value va id(−1,−1) and va id(0, 0) for
concepts belonging to the system and domain knowledge
respectively, since these are not derived from video annota-
tions.

In Fig. 2, we illustrate the concepts, conceptual relations
and CGs for the example of Fig. 1 in the way they are stored
in the KB of the Smart VideoText model. Note that Context
in cgc/5 is a flag; when it has the value special, the next
argument defines the context of a concept (situation here)
and not a usual concept-type name.

5. Video data access in Smart VideoText database

Smart VideoText model supports multiple-strategy, knowl-
edge-based video data access which includes operator-based
queries, natural language queries and hypertext-like video
browsing, based on semantic associations provided by the
KB.

5.1. Operator-based video queries

An operator-based user query is an expression formed
through terms and zero or more operators. Terms are the
strings that a user wants to find in the annotations of the tar-
get logical video segments. The operators define the relation-
ships among the terms and can be Boolean (AND etc.), tem-
poral (ADJ) and/or interval operators (AFTER, DURING,
etc.). The detailed description and syntax of such operator-
based query expressions can be found in [9]. A video query
in the Smart VideoText model, which is an extension of the
VideoText query, is defined as:

Q(Expression, Scope,KBFlag,MaxResults)

where Expression is the VideoText query expression;
Scope defines the granularity of the answer and can be video
streams (v) or logical video segments (s); KBFlag is a flag
(true/false) denoting whether to use the knowledge base or
not; and MaxResults is the maximum number of returned
query results. Notice that if Expression contains interval
operators, then Scope is always (s). This stems from the
nature of this category of operators.

The utilization of the KB is expected to increase the
effectiveness of the operator-based video data access. This
is due to the fact that exact term matching suffers in the
following cases:
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– Poor recall: in this case, useful logical video segments
are not retrieved because their annotations contain a syn-
onym or something semantically similar, rather than the
exact terms presented in the video query.

– Poor precision: too many video annotations contain the
given term(s), but not all the retrieved logical video seg-
ments are actually semantically relevant to the video
query.

The use of the KB (particularly the concept and relation-
type hierarchy) in the video data model alleviates the poor
recall problem. For example, consider a user interested in
video lectures about the “rumen” (part of the digestive sys-
tem in cows), who is getting no results due to poor recall.
A generalization of the term “rumen” to the term “digestive
system” based on the concept type hierarchy can probably
produce some results. A discussion about how the KB can
be used to improve the video query precision is given in
Sect. 5.2.

The existence of the KB in the Smart VideoText model
provides two modes of operator-based query evaluation: raw
term matching and semantic term matching. The mode is de-
termined by the value of the KBFlag argument (false or
true, respectively) in a Smart VideoText query expression.
The first case is straightforward: a text annotation (and its
logical video segment) is considered as an answer to a video
query if the annotation contains all the query terms and sat-
isfies all the constraints introduced by the operators. In the
second case, a similarity measure is required to be able to
determine the extent to which two concepts may be labeled
“similar”. Calculation of the similarity of two concepts de-
pends upon the prior identification of appropriate “sources”
of similarity associated with the concepts. Such a source is
the concept-type hierarchy. Having the form of a lattice, the
type hierarchy of a CG system allows the computation of
the distance between related nodes in the lattice, which is
often called semantic distance. The semantic distance can be
used as the measure to rank the results of an operator-based
video query.

For a semantic match, if two concepts are syntactically
different from each other but belong to the same branch of a
concept-type hierarchy, the more specific one can be repeat-
edly generalized to shorten the semantic distance between
them. Between two semantic matches, the one that uses
fewer successive generalizations is more important since the
semantic distance between this one and the matching concept
is shorter. Thus it has a higher rank. We restrict ourselves to
generalization since specialization does not always preserve
truth [26]. For example, specializing the concept [building]
to [hospital] is not correct in all contexts. Polysemy cases
(e.g., whether bank is a financial institution or a river bank)
are dissolved based on the different conceptual definitions
of the polysemy terms, together with the neighboring text of
the annotation in which the polysemy term occurs. This text
helps select the right CG definition automatically. If this is
not possible, the user manually dissolves the ambiguity.

The operator-based query evaluation is performed by re-
cursively decomposing the query into subexpressions and
processing them along the lines described in [9]. The only
difference is that in the Smart VideoText model, if a query
term does not match a term in a video annotation, an attempt

to generalize the query term using the concept-type hierar-
chy is performed. On successful generalization, the matching
process is repeated, this time for the term, which is the re-
sult of the generalization. This is depicted in Fig. 3. The
user decides whether to use raw or semantic term matching
in a video query. When enabled, the semantic term matching
method is automatically invoked when the raw term match-
ing fails to give results or the number of results is below
a user-defined threshold. In addition, the query evaluation
process is recursive.

5.2. Natural language video queries

Since the derivation of CGs from natural language text is not
fully automated, video queries expressed in natural language
are partially supported in the form of query templates. A
query template corresponds to a predefined, semi-structured
CG in which the user is requested to precisely define it by
either specifying one or more concepts or replacing a generic
referent marker of a concept with a more specific one.

An example of a query template coupled with a semi-
structured CG is given in Fig. 4. The user fills in the empty
fields of either a natural language query or a CG expression
(these empty fields are represented as variables in italics in
Fig. 4) to make the question complete. In both cases, the re-
sult is a CG that the system tries to “prove” with the contents
(CGs, concepts, etc.) of the KB. Upon successful matching,
the query CG (or possibly a modified version of it due to an
expansion operation, for example) will be augmented with
icons that will allow the user to invoke a video player to play
the related video clip(s). This is possible through the map-
ping schemes Map1 and Map2 that map CGs and concepts
to logical video segments.

It is useful to distinguish between directly related videos
and indirectly related ones. A logical video segment is said
to be directly related to a user query, if its derived knowledge
matches syntactically the information need of the user, that
is, without any use of other knowledge. Consequently, for
indirectly related logical video segments, additional knowl-
edge has been used (for example, the concept-type hierar-
chy) to complete the match which, as a result, is a semantic
match. The Dempster–Shafer theory [1] can be used to com-
bine various “sources” of similarity evidence associated with
CGs to compute the total similarity between two CGs. Such
“sources” can be the maximal join, matching between re-
lations, concepts and conceptual referents, the concept-type
hierarchy, and the ratio of arcs in the maximal join CG to
the total number of arcs in the larger of the two CGs that
participate in the maximal join operation [1]. The size of
a CG is equal to the number of arcs that join its building
blocks, i.e., its concepts and relations. The contribution from
any of the above sources of evidence of similarity can be
equal or weighted. In general, the total similarity is defined
as:

TotalSimilarity = w1 × Evidence1 + w2 × Evidence2

+ . . . + wN × EvidenceN
where wi are the weights and

∑
wi = 1, i = 1, . . . , N . Ac-

cording to [1], this combined similarity allows for superior
retrieval to that obtained by any individual form of evidence.
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Fig. 3. Term Generalization provides the seman-
tic term matching in the operator-based query
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Fig. 4. A quaery template for the designer X of some
building Y

This TotalSimilarity value is used to rank the results in
the case of natural language video queries.

Since the end-user is assumed to be unfamiliar with the
CG representation formalism, a sophisticated graphical user
interface (GUI) is necessary to make natural language video
queries as user-friendly a process as possible. In a real ap-
plication with a clearly defined content, a preexisting, con-
trolled vocabulary can further alleviate the problem of user
unfamiliarity with the CG formalism.

The KB can be used in both operator-based and natural
language queries to improve precision. If a Smart VideoText
query has produced too many answers, it is possible to use
this knowledge to construct system queries – queries that are
constructed by the system and are presented to the user – to
improve the precision of the returned logical video segments.
For example, if searching for video clips about cars has
returned too many logical video segments, then, the system
should try to collect various instances of cars and ask the
user if he/she is interested in any particular brand name or
model. According to the notation we have adopted for the
concepts, such an operation is straightforward as long as
the information required for this task is enclosed into the
referent fields of concepts.

5.3. Video browsing

The Smart VideoText model supports an efficient and effec-
tive way for the user to browse a large collection of video
data as well as the corresponding video annotations based on
their semantic content. This is achieved by using the seman-
tic associations among the concepts of video annotations and
dynamically representing them as “hyperlinks” between the
corresponding logical video segments. The users can follow
these links when they browse the video database.

A term in a video annotation, which is also a concept
in the KB, could serve as a hypertext-like link that points
to a logical video segment that contains the same concept
or a semantically similar one. For instance, two video an-
notations containing the term “Mars” are directly associated
(so are their corresponding logical video streams), but any

of them is indirectly related to a third annotation containing
the term “Pathfinder” and vice versa. Thus, semantic associ-
ations among the concepts in the KB can be the vehicles to
browse over semantically related video clips and video an-
notations. This functionality is supported by the mappings
Map1,Map2 and the other KB components in the Smart
VideoText model.

Figure 5 gives an example of the browsing capabilities
of the Smart VideoText model. Assume that there are three
logical video segments LV Si(i = 1, 2, 3), with correspond-
ing video annotations V Ai(i = 1, 2, 3). CGi(i = 1, 2, 3) are
conceptual graphs derived from those annotations and are
part of the KB. Assume further that the first set of data,
LV S1, V A1, and CG1, is presented to the user. The user
can either ask the system to find information related to one
of the designers (say designer b) or ask for information re-
lated to skyscrapers. All can be done in a hypertext-like
fashion, i.e., some elements displayed have the potential to
function as hypertext links to other video data. The exis-
tence and functionality of these hyperlinks are provided by
the model rather than being explicitly defined by the database
user. Hence, these KB-based links are generated “on the fly”
rather than being explicitly predefined and fixed as in hy-
pertext documents like the HTML pages on the World Wide
Web.

In the example of Fig. 5, a request for additional or
related information about designer b can lead the user to V A2
or CG2 through a direct concept matching over [Person] and
a membership check over the referents. At any time, the user
can also ask the system to play the corresponding logical
video segment, LV S2.

On the other hand, an information request about
skyscrapers will drive the user to the third set of data
(V A3, CG3, and LV S3) given the fact that the concept-
type hierarchy in the domain KB includes a relation like
is a(skyscraper, building). Moreover, from the third set of
data, the system can suggest the second set as closely related
information.
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Fig. 6. Smart VideoText system architecture

6. Smart VideoText system architecture

The Smart VideoText model introduces a modular architec-
ture for implementing video databases. Although video seg-
ments, text annotations and application knowledge are re-
lated in the data model, they can be managed by a different
component of a Smart VideoText based system. Such a sys-
tem is outlined in Fig. 6 and its components are described
below.

The video database stores the video data, while the video
annotation database stores annotations of the video data.
Each annotation is stored together with a reference to the
logical video stream it annotates.

The system knowledge includes the canonical for-
mation rules and knowledge that is supposed to be
application-independent. Application knowledge consists of
CGs, concept-types, concepts, and relations that are de-
rived from video annotations. Although multiple application
knowledge bases can be allowed (one for each application),
only one of them is used at any time. This means that knowl-
edge consistency checking is performed at the application
level. Domain knowledge includes the concept-type hierar-
chy, together with the concept and conceptual relation defi-
nitions of the various concepts and conceptual relations used
in the application. In other words, it includes all the knowl-
edge related to the application, but not explicitly defined in
the video annotations.

A kernel integrates the various modules into a single
video database system. The kernel includes a Prolog infer-
ence engine that is responsible for the inference.

Among the modules for the user/author are a parser, a
semantic interpreter, a query handler, a knowledge manager,
a linkage assistant, an editor, and a video player. The parser
uses syntactic rules to generate parse trees corresponding
to all sentences of the video annotations (or those selected
by the user), as well as to the queries expressed in natural
language. The semantic interpreter translates the above trees
into CGs and, in the case of knowledge construction, inserts
them into the KB if they fulfill the canonical formation rules.
In the case of a natural language query, the resulting CG
is passed to the query handler module. In both cases, the
semantic interpreter can be manually forced to abandon some
parts of a sentence that are of no interest.

The query handler lets the user construct queries con-
cerning the video database. A query is expressed as a CG
and is constructed by the user either directly or indirectly. In
the first case, the user selects the appropriate items (concepts
and relations) from a combination of selection components
(menus, listboxes, etc.). It is also possible for the user to se-
lect a query from a set of previously defined query templates,
expressed in natural language. For each of them, there exists
a preconstructed CG that is used to answer the query. Creat-
ing a CG-query indirectly means that the user expresses it in
natural language using predefined sentence parts. Constraints
on the use of these sentence parts ensure the syntactic valid-
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ity of the final query statement. The proper system modules
(the parser and the semantic interpreter) convert these parts
into CG form. The knowledge manager supports operations
such as reviewing the KB and asserting the knowledge in any
of the three parts of the KB. Review of the KB is performed
at the CG level. The user opens the KB file and displays
any CG in graphical form. CGs that satisfy the user-defined
criteria can also be displayed. These criteria are filters that
allow the user to inspect CGs with a common property. For
example, in a geographical video database application, the
user may want to see all the CGs concerning the population
of capital cities in order to update the population numbers.
Furthermore, the knowledge base can be modified if neces-
sary. For example, when a video annotation is updated or
deleted, the corresponding CGs in the KB are also modified
or deleted by the system. In addition, knowledge consis-
tency techniques are applied to ensure that the KB remains
consistent after modifications.

The main advantage of the above architecture is its mod-
ularity, which stems directly from the video content and the
knowledge representation methods that are used. The KB-
related modules are independent of each other as long as they
conform with the representation standards of CGs, which
are well-founded. Hence, advances in any of these domains
could be easily utilized.

7. Conclusion and future work

In this paper, we have proposed an annotation-based video
data model called Smart VideoText. This model utilizes
the conceptual graph knowledge representation formalism
to capture and represent the semantic associations among
the concepts described in video annotations. The model can
support dynamic video annotation manipulation, annotation
sharing and multiple interpretations of the same logical video
segment. The model also includes a query language that
supports complicated video queries based on the semantic
content of the video data. Operator-based (Boolean, tempo-
ral, and interval query operators) as well as natural language
video queries are supported. The CG layer also allows trans-
parent, hypertext-like content-based browsing on the video
data. Furthermore, the functionality of the operator-based
video query and retrieval is significantly enhanced because
the CG layer provides semantic term matching. In this pa-
per, we have concentrated mainly on the video data model
and its knowledge-based aspects.

We are currently in the process of implementing the
Smart VideoText model along the lines of the system ar-
chitecture proposed in Fig. 6. The system’s prototype is pri-
marily based on the COMFRESH system [12], and provides
web-based video access. More issues concerning implemen-
tation aspects, such as query optimization and various per-
formance measurements, will be studied in the near future.

Applying the ideas of Smart VideoText model to other
media forms (e.g., sound and graphics) is fairly straightfor-
ward since our model deals directly with an intermediate,
textual representation of the content of such data. The in-
ference mechanism is not aware of the media form of the
raw data; it deals only with the text annotations that de-
scribe their content. Thus, extending our model to multi-

media documents is feasible. This is very important since,
given the popularity of the World Wide Web and the con-
stantly increasing amount of multimedia data available on-
line, knowledge-based information retrieval systems play an
important role in the effort to implement more efficient and
effective multimedia information systems.
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