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Abstract. In this article, several practical algorithms are proposed
to support content-based video analysis, modeling, representation,
summarization, indexing, and access. First, a multilevel video data-
base model is given. One advantage of this model is that it provides
a reasonable approach to bridging the gap between low-level rep-
resentative features and high-level semantic concepts from a hu-
man point of view. Second, several model-based video analysis
techniques are proposed. In order to detect the video shots, we
present a novel technique, which can adapt the threshold for scene
cut detection to the activities of variant videos or even different video
shots. A seeded region aggregation and temporal tracking technique
is proposed for generating the semantic video objects. The semantic
video scenes can then be generated from these extracted video
access units (e.g., shots and objects) according to some domain
knowledge. Third, in order to categorize video contents into a set of
semantic clusters, an integrated video classification technique is de-
veloped to support more efficient multilevel video representation,
summarization, indexing, and access techniques. © 2001 SPIE and
IS&T. [DOI: 10.1117/1.1406944]

*The short version of this work was first presented at SPIE Electronic Imag
Storage and Retrieval for Media Databases, San Jose, 24–26 January 2001
work was supported by NSF under 9972883-EIA, 9974255-IIS, and 9983249-
a grant from the state of Indiana 21th Century Fund, and by grants from HP, I
Intel, NCR, Walmart, and Telcordia.
1 Introduction

Digital video now plays an important role in entertainme
education, and other multimedia applications. It has
come increasingly important to develop mechanisms t
process, filter, search, and organize the digital video in
mation so that useful knowledge can be derived from
exploding mass of information that is now accessab
Since it is difficult to index and categorize video data a
tomatically compared with similar operations on tex
search engines for video data are still rare. Content-ba
video database modeling, representation, summariza
indexing, retrieving, navigating, and browsing ha
emerged as challenging and important areas in comp
vision and database management.

All the existing video database systems first partiti
videos into a set of access units such as shots, objec
regions,1–7 and then follow the paradigm of representin
video via a set of feature attributes, such as color, textu
shape, and layout.8,9 Those features are properly indexe
according to some indexing structure, and are then used
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Fan et al.
video retrieval. Retrieval is performed by matching the fe
ture attributes of the query object with those of videos
the database that arenearestto the query object in high-
dimensional spaces. The query-based video database a
approaches typically require that users provide an exam
video or sketch, and a database is then searched for vi
which are relevant to the query. Some other approache
video database management have focused on suppo
hierarchical browsing of video contents. In order to supp
hierarchical video browsing, the video contents are fi
classified into a set of clusters on the basis of the simila
of their representative visual features.10–12However, the up
and coming networked content-based video database
tem still suffers from the following problems.

1. Video analysis problem:Video shots or even video
objects, which are directly related to video structur
and contents, are used as the basic units to acces
video sources. A fundamental task of video analy
is to extract such video units from the videos to f
cilitate the user’s access~e.g., retrieving and brows
ing!. Only after such video units become availab
can content-based retrieving, browsing, and mani
lation of video data be facilitated. Automatic sema
tic video analysis is still hard in current comput
vision techniques.13–16

2. Indexing problem: After the video content analysi
procedure is performed, video contents in the da
bases are represented as independent data poin
high-dimensional feature space, and a similari
based query is equivalent to anearest neighbor~NN!
search. High-dimensional indexing structures th
have been investigated in recent years seem to b
promising solution to this problem.17–19 Unfortu-
nately, the efficiency of these existing high
dimensional indexing structures deteriorates rapi
as the number of dimensions increases.20 On the
other hand, the visual features, which are selected
describing video contents, are almost high dime
sional.

3. Representation problem: It is not easy for a naive
database user to express queries appropriately
terms of the given features, thus naive users are
terested in browsing or querying the databases a
semantic level. However, the low-level visual fe
tures, which can be automatically extracted from t
videos, do not correspond in a direct or convenie
way to the underlying semantic structure of vid
contents.21–24

4. Access control problem:A shortcoming of existing
video database systems,1–7 however, is the lack of
suitable access control mechanisms. The deve
ment of such mechanisms is increasingly relevant
cause video data today are used for very differ
objectives. User-adaptive video database access
trol is thus becoming one of the important problem
because different network users may have differ
permissions for accessing different videos or even
same video with possibly different quality levels.

5. QoS problem: Given the heterogeneous and d
namic ~i.e., varying performance! natures of net-
896 / Journal of Electronic Imaging / October 2001 / Vol. 10(4)
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works, video contents should be scalable over a w
range of bandwidth requirements to provide fa
video retrieving and browsing over networks. How
ever, the current network techniques cannot prov
efficient quality of service~QoS! guarantees.

Based on the above observations, a novel multile
video modeling and indexing approach, called MultiVie
is proposed to support hierarchical video retrieving a
browsing. This article is organized as follows. In Sec. 2
discuss related work on content-based video database
tems. In Sec. 3 we propose a multilevel video model
support hierarchical video representation, summarizat
indexing, retrieving, and browsing. Automatic conten
based video analysis techniques used in MultiView are
troduced in Sec. 4. A novel integrated video classificat
algorithm is proposed in Sec. 5. In Sec. 6 we presen
multilevel video indexing and accessing structures. We g
our conclusions in Sec. 7.

2 Related Work

Content-based video database has emerged as an impo
and challenging area of research and a number of us
systems have been proposed in the past few years. He
Sec. 2, a brief overview of these existing content-ba
video database systems is given. Detailed performa
analysis of these systems can be found in Ref. 25.

QBIC, developed at the IBM Almaden Research Cen
is an open framework and developing technology, wh
can be used for both static and dynamic image retriev1

QBIC allows users to graphically pose and refine quer
based on multiple visual features such as color, shape
texture. QBIC also supports video querying through sh
or key frames.

Virage, developed by Virage Inc.,4 can adjust the
weighting associated with different visual features. Vira
includes visual features such as color, texture, color layo
and structure. Virage can also classify images accordin
visual features or domain specification.

Blobworld,26 developed at the University of California
Berkeley, can segment images automatically into regio
and these may be semantic objects or parts of sema
objects. The Blobworld system includes color, shape, s
tial, and texture features.

Photobook,2 developed at the Massachusetts Institute
Technology Media Laboratory, supports a set of interact
tools for browsing and searching images. Photobook u
color, shape, texture, and face features. The more re
version of Photobook also includes image annotation
retrieval loop.24

VideoQ,5 developed at Columbia University, suppor
video querying by examples, visual sketches, and k
words. This system includes color, texture, motion traje
tory, shape, and size. VideoQ can support several qu
types: single-object query and multiple-object query. T
same group at Columbia has also developed several o
video search engines such as VisualSEEK a
WebSEEK.27,28

Netra-V,7 developed at the University of California
Santa Barbara, first segments the videos into a set of
gions, and these regions are then tracked among fram
The system uses color, texture, shape, affine motion v



MultiView: Multilevel video . . .
Fig. 1 Multilevel video model of MultiView: (a) main components of the video database model for a
shot-based accessing approach; (b) main components of the video database model for an object-
based accessing approach.
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similar regions from the database.

MARS,3 developed at the University of Illinois
Urbana–Champaign, differs from other systems in terms
both the research scope and the techniques used. The
focus of MARS is not on finding a single ‘‘best’’ featur
representation, but, rather, on how to organize various
sual features into a meaningful retrieval architecture wh
can dynamically adapt to different applications and diff
ent users.

Name-It,6 developed at Carnegie Mellon University, a
sociates name and faces in news videos. To do this,
system detects faces from a news video, locates name
the sound track, and then associates each face with
correct name.

PicHunter,29 developed at the NEC Research Cent
represents a simple instance of a general Bayesian fra
work for using relevance feedback to direct a search. It a
attempts to maximize the information obtained from a u
at each iteration of the search.

Browsing-based video database systems,30–32 which
classify video contents into different classes according
their low-level visual features, are also widely studied, a
several practical systems have been proposed. V
browsing is useful for identifying relevant video conte
from a human point of view.

One common shortcoming of these existing image a
video database systems is that only a small number of th
systems addresses the embedded high-dimensional v
indexing structures. Video indexing is fast becoming a ch
lenging and important area when truly large video data s
come into view.33 Therefore, the cutting-edge research
integrating the computer vision with the database mana
ment deserves attention.

3 Multilevel Video Model

Efficient content-based retrieving and browsing of vid
require well-defined database models and structures. Un
traditional database models, a suitable video datab
f
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model must include the elements that represent inhe
structures of a large collection of videos and the seman
that represent the video contents. In order to support m
efficient video representation and indexing in MultiView,
multilevel video model is introduced by classifying vide
contents into a set of hierarchical manageable units, suc
clusters, subclusters, subregions, scenes, shots or ob
frames or video object planes~VOPs!, and regions. More-
over, the semantics at the database level are obtained b
integrated video classification procedure, so that high-le
concept-based querying, browsing, and navigating can
supported.

Basic video access units, such as shots and key obj
are first obtained and represented by a set of visual, m
and semantic features. The related video shots and v
objects are further classified into meaningful video sce
according to some domain knowledge~e.g., a scene
model!.13–16 The video scenes, which convey the vide
contents in a database, are then categorized into a s
semantic clusters, and each semantic cluster may consi
a set of subclusters. The subclusters can further be p
tioned into a set of subregions to support more effici
high-dimensional video indexing. Each subregion cons
of a limited number of similar video contents~e.g., video
scenes!, so that linear scanning can be used to generate
indexing pointers of the video contents in the same sub
gion.

The cluster layer may consist of a set of semantic cl
ters, shown in Fig. 1, which is used to describe the phys
structures and semantics of video contents in a databas
order to obtain this cluster layer, we have developed
integrated video classification technique. The subclus
layer includes the physical structures and compact sema
contents of the clusters. The subcluster layer can be
tained by discovering the interesting relationships and ch
acteristics that exist implicitly in the cluster. We will se
that including a subcluster layer can provide a more e
cient video indexing structure. The scene layer, which
very useful for high-level video database browsing, d
Journal of Electronic Imaging / October 2001 / Vol. 10(4) / 897
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Fig. 2 Block diagram of the semantic video analysis scheme in MultiView.
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scribes the semantic video contents. The video shot or
ject layer describes the video representation, summar
tion, indexing, and access units. The frame or VOP la
represents visualization of the video content. The reg
layer describes the spatial components of a visual con
and their relationships.

Each video layer is represented by a set of meta, vis
and semantic features. In the cluster layer, each compo
is characterized by the cluster centroid, radius, feature
mensions, subcluster number, dimensional weighting c
ficients, and its node identifier. The cluster centroid a
radius are represented by a set of visual features. In
subcluster layer, each component is also characterize
the subcluster centroid, radius, feature dimensions, su
gion or object number, dimensional weighting coefficien
and its leaf node identifier. The subcluster centroid and
dius are again represented by a set of visual features.
scene layer is represented by a set of visual features, m
features, and semantic features. In the shot or object la
each component is represented by an indexing identi
meta features, semantic features, and a set of visual
tures. In the frame or VOP layer, each component is rep
sented by meta features, semantic features, and a s
visual features which can be obtained from the image
gions.

Since all of the video database representation layers
characterized by a set of related visual, meta, and sema
features, a framework for bridging the gap between
low-level features and the high-level concepts can be p
vided by using an integrated video clustering techniq
This multilevel representation and summarization sche
can also provide a scalable method for retrieving and vie
ing video contents in a database.

4 Content-Based Video Analysis

There are two approaches to accessing video source in
tabases:shot basedand object based~or even region
based!. The objective of video analysis is to obtain the
ctronic Imaging / October 2001 / Vol. 10(4)
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basic video access units~e.g., shots and objects!. Figure 2
shows a block diagram of the automatic video cont
analysis scheme developed in MultiView.

4.1 Video Scene Detection

Video shots, which are directly related to video structu
and contents, are the basic units used for accessing v
sources. An automatic shot detection technique has b
proposed for adaptive video coding applications,34 how-
ever, in this article we focus on video shot detection
compressed MPEG videos.

Since there are three frame types~I, P, and B! in a
MPEG bit stream, we first propose a technique to detect
scene cuts occurring on I frames, and the shot bounda
obtained on the I frames are then refined by detecting
scene cuts occurring on P and B frames. For I fram
block-based DCT is used directly as

F~u,v !5
CuCv

4 (
x50

7

(
y50

7

I ~x,y!

3cos
~2x11!up

16
cos

~2y11!vp

16
, ~1!

where

Cu ,Cv5H 1

&
, for u,v50,

1, otherwise,

~2!

One finds that the dc image@consisting only of the dc co-
efficient (u5v50) for each block# is a spatially reduced
version of an I frame. For a MPEG video bit stream,
sequence of dc images can be constructed by decoding
the dc coefficients of I frames, since dc images retain m
of the essential global information of image component
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MultiView: Multilevel video . . .
Yeo and Liu have proposed a novel technique for dete
ing scene cuts on the basis of dc images of a MPEG
stream,35 in which the scene cut detection threshold is d
termined by analyzing the difference between the high
and second highest histogram difference in the sliding w
dow. In this article, an automatic dc-based technique is p
posed which adapts the threshold for scene cut detectio
the activities of various videos. The color histogram diffe
ences~HD! among successive I frames of a MPEG
stream can be calculated on the basis of their dc image

HD~ j , j 21!5 (
k50

M

@H j 21~k!2H j~k!#2, ~3!

whereH j (k) denotes the dc-based color histogram of
j th I frame,H j – 1(k) indicates the dc-based color histogra
of the (j – 1)th I frame, andk is one of theM potential color
components.

The temporal relationshipsamong successive I frame
in a MPEG bit stream are then classified into two oppos
classes according to their color histogram differences
an optimal thresholdT̄c .

HD~ j , j 21!.T̄c , scene–cut,

HD~ j , j 21!<T̄c , non–scene–cut.
~4!

The optimal thresholdT̄c can be determined automatical
by using the fast searching technique given in Ref. 34. T
video frames~including the I, P, and B frames! between
two successive scene cuts are taken as one video
Since the MPEG bit stream is generated by a fixed perio
frame types, the scene cuts may not always occur on t
frames; these scene cuts may also occur on the P fra
and B frames. Therefore, these detected shot bound
should be refined by detecting scene cuts occurring on t
and B frames. These scene cuts are detected accordi
the following criteria.

1. If a scene cut occurs before a P frame, the most m
roblocks in the P frame should be encoded as I blo
because the assumption of motion-compensation
diction coding is lost. If such a P frame is detecte
the corresponding shot boundary~the scene cut ob
tained by using I frame! should be reset to the corre
sponding P frame.

2. If a scene cut occurs before a B frame, the mos
macroblocks in the B frames should be encoded a
blocks or backward-predicted blocks because
temporal correspondence between the B frame an
forward reference frame is lost. If such a B frame is
detected, the shot boundary should be reset to
corresponding B frame.

Gradual transitions such as cross dissolves, fade ins,
fade outs allow two shots to be connected in a smooth w
Gradual transitions, which are attractive for detecting hig
level semantic events, can be determined by analyzing
variance of the histogram differences. The average
variance of the histogram difference for thenth video shot
with M frames can be calculated as
-
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M

HD~ i ,i 11!,

sn5
1

M (
i 51

M

uHD~ i ,i 11!2mnu2.

~5!

Theabsolute variances i , between thei th frame in thenth
video shot and its average histogram differencemn , can be
defined as

sn
i 5uHD~ i ,i 11!2mnu2. ~6!

The activity of each frame in a dissolve transition shot p
duces a U-shaped curve of the absolute variance. In
case of fade in and fade out, the absolute curve show
monotonous increase or decrease. The gradual transi
can be detected when an appropriate number of subseq
frames exhibit values of HD(i ,i 21) that are greater than

the determined thresholdT̄c , together with the occurrenc

of a value ofsn
i greater thanT̄s . T̄s can be determined by

T̄s5T̄c2d,
d5c1mn1c2sn ,

~7!

where the coefficientsc1 and c2 are determined by
experiment.8 Since dissolve and fade processes have a l
duration~this property is very different from that of scen
cut!, shot length can also be included as a critical param
for gradual transition detection. The experimental resu
for scene cut detection from two compressed MPEG me
cal videos are given in Figs. 3 and 4. The average per
mances of our scene cut detection technique for vari
video types are given in Tables 1 and 2. The semantic vi
scenes can be further generated from these extracted v
shots according to some domain knowledge.13–15 More-
over, the meta data, which are represented by the keyw
of text annotation, can also be used for generating a sem
tic video scene.

4.2 Video Object Extraction

The previous shot-based video representation and ac
technique does not capture the underlying semantic st
ture of video sources. Extracting the semantic structure
video sources is very important for providing more effe
tive video retrieval and browsing, because people wa
videos based on semantic contents, not on physical sho
key frames. Due to their inherent content dependen
video objects are especially suitable for representing
mantic video contents.

Automatic moving object extraction also plays a fund
mental role in computer vision, pattern recognition, a
object-oriented video coding. Many approaches to au
matic moving object extraction have been proposed in
past.36–39 However, the outputs of these feature-bas
video segmentation techniques are only the homogene
regions according to the selected visual features. It is
hard for current computer vision techniques to extract
semantic objects from a human point of view, but seman
object generation for content-based video indexing is
coming possible because the videos can be indexed
some se-
Journal of Electronic Imaging / October 2001 / Vol. 10(4) / 899
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Fig. 3 Scene cut detection results and the corresponding color histogram difference: (a) the first I
frame; (b) spatial segmentation result on block resolution; (c) temporal change regions on block reso-
lution; (d) color histogram difference with the determined threshold; (e) part of the detected scene cut
frames.

Fig. 4 Scene cut detection results and the corresponding color histogram difference: (a) the first I
frame; (b) spatial segmentation result on block resolution; (c) temporal change regions on block reso-
lution; (d) color histogram difference with determined threshold; (e) part of the detected scene cut
frames.
ctronic Imaging / October 2001 / Vol. 10(4)
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MultiView: Multilevel video . . .
mantic objects of interest, such as human beings, cars
airplanes. This interest-based video indexing approac
reasonable because users do not focus on all the ob
presented in the videos.16 This reduces the difficulties o
automatic semantic object generation for video indexing

Based on the above observations, aseeded region aggre
gationand temporal tracking technique is proposed for g
erating semantic objects. The steps in this process ar
follows.

1. A hybrid image segmentation technique integrates
results of an edge detection procedure and
similarity-based region growing procedure.

2. Several independent functions are designed such
every function provides one type of semantic obje
Each function uses theobject seedand region con-
straint graph~e.g., a perceptual model! of its corre-
sponding semantic object.16

3. If an object seed is detected, aseeded region aggre
gation procedure is used to merge the adjacent
gions of the object seed as the semantic object.40 The
perceptual model of a semantic object can guide
way the adjacent regions of object seeds should
put together.

4. If the above automatic object extraction procedu
fails to obtain the semantic object from a hum
point of view, human interaction defines the seman
objects in the initial frame.41

5. Once the semantic objects have been extracted,
are tracked across frames, i.e., along the time axis

Table 1 Average performance of our adaptive scene cut detection
technique for news sequences.

Test videos
frame numbers

news1.mpg
5177

news2.mpg
6288

news3.mpg
7024

Break shots 86 98 129

Gradual shots 6 11 7

Missed shots 4 7 15

False alarms 5 6 13
r
s
ts

s

at

y
o

this end, we use acontour-based temporal tracking
procedure.38 The procedure uses two semantic fe
tures,motion and contour, to establish object corre
spondence across frames. Thekth Hausdorff distance
technique is used to guarantee the temporal ob
tracking procedure.42

A set of results for four video sequences that are w
known in the video coding community, namely, ‘‘Akiyo,
‘‘Carphone,’’ ‘‘Salesman,’’ and ‘‘News,’’ are given in Figs
5, 6, and 7. Since the seeds for different semantic obje
are identified, the proposed seeded semantic video ob
extraction technique is very attractive for multiple obje
extraction. The semantic video objects, which are obtai
by integrating human–computer interaction to define
semantic objects with an automatic temporal tracking p
cedure, are shown in Fig. 8. A set of visual features can a
be selected to represent the video contents in the datab

5 Integrated Video Classification

There are three conventional approaches for accessing
video contents in database.

1. Query by exampleis widely used in existing video
database systems. The example-based approac
necessary in a situation where users cannot cle
describe what they want by using only text. In ord
to provide query by example, all the videos in th
databases are indexed through a set of hi
dimensional visual features according to some ind
ing structures. Retrieval is then performed by matc

Table 2 Average performance of our adaptive scene cut detection
technique for medical image sequences.

Test videos
Frame numbers

med1.mpg
33 200

med2.mpg
15 420

Break shots 116 57

Gradual shots 21 48

Missed shots 6 9

False alarms 5 11
Fig. 5 (a) Original image of ‘‘Carphone;’’ (b) the color edges; (c) the intensity edges; (d) the detected
face and its rectangular region; (e) the extracted objects with region edges; (f) the original image of
‘‘Salesman;’’ (g) the color edges; (h) the intensity edges; (i) the detected face and its rectangular
region; (j) the extracted object with region edges.
Journal of Electronic Imaging / October 2001 / Vol. 10(4) / 901
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Fig. 6 (a) Original image of ‘‘Akiyo;’’ (b) the color edges; (c) the intensity edges; (d) the chrominance
edges; (e) the region boundaries; (f) the human face and its rectangular region; (g) the connective
edges of the object seed; (h) the extracted semantic object; (i) the original image; (j) the color edges;
(k) the intensity edges; (l) the chrominance edges; (m) the region boundaries; (n) the connective edges
of the object seed; (o) the extracted semantic object; (p) the object region obtained by using size ratio
constraint (frame 10); (q) the object region obtained by using size ratio constraint (frame 15); (r) the
object region obtained by using size ratio constraint (frame 120); (s) the object region (with the face
seed) obtained by using size ratio constraint (frame 290); (t) the object region (with the face seed)
obtained by using size ratio constraint (frame 298).
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ing the feature attributes of the query object w
those of videos in databases.43,44However, the query-
by-example approach suffers from at least two pro
lems. The first one is that not all database users h
video examples at hand. Even if the video datab
system interface can provide some video templa
there is still a gap between the various requireme
of different users and the limited templates provid
by the database interface. The second one is that
ive users may prefer to query the video database
semantic level through keywords. However, it is n
ctronic Imaging / October 2001 / Vol. 10(4)
e
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-
a

easy for current computer vision techniques to brid
the gap between the low-level visual features a
high-level concepts from a human point of view.

2. Query by keywordsis also used in some video data
base systems based on text annotation. There
three approaches that can provide text annotation
video contents:~a! obtain keywords from the tex
captions in videos through OCR techniques;45,46 ~b!
use free text annotation by humans with doma
specific knowledge to provide a semantic interpre
Fig. 7 Object extraction results from ‘‘News.’’ First frame: (a) original image; (b) color edges; (c)
luminance edges; (d) chrominance edges; (e) human face of object 1; (f) human face of object 2; (g)
object 1; (h) object 2; 10th frame: (i) original image; (j) region boundaries; (k) tracked object 1; (l)
tracked object 2; 260th frame: (m) original image; (n) tracked object 1; (o) tracked object 2.
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Fig. 8 Results of semantic object definition and temporal tracking.
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tion of the video contents;~c! perform speech recog
nition and natural language understanding procedu
on the audio channel.47,48 This query-by-keywords
approach also presents at least two problems.
first is that different people may have a different u
derstanding of the same video content, and it is
easy for a naive video database user to figure out
exact keywords to use for the query. The second
that it cannot provide query by example because
would be difficult for a naive user to translate th
contents of the video examples at hand into ke
words. A practical video database system should s
port both query by example and query by keyword
thus a mapping from high-level semantic conce
~e.g., those represented by keywords of text anno
tion! to low-level visual features should be availab

3. Random browsingis widely accepted by the naiv
video database users. Naive users are intereste
browsing the video database at the semantic le
rather than having to use visual features or keywo
to describe their requests. In order to support rand
browsing, the video contents should be classified i
a set of semantic clusters from a human point
view. Since the low-level visual features do not co
respond in a direct way to the semantic concepts
good solution to bridge the gap between them
needed.

One way to resolve the semantic gap comes fr
sources outside the video that integrate other source
information about the videos in the database. In MultiVie
the video contents in the database are jointly represente
a set of visual features and keywords of the text annotat
There are two different similarity measures for compar
two video contents with semantic labelss and t:3,21 the
s

e

t
e

-

-

in
,

f

y
.

weightedfeature-based similarity distance dF(Os ,Ot) and
the semantic similarity distance dS(Os ,Ot).

dF~Os ,Ot!5(
i 51

n
1

ai
•dF

i ~Os ,Ot!, ~8!

dS~Os ,Ot!5(
i 51

m

dS
i ~Os ,Ot!, ~9!

where ai is the i th dimensional weighting coefficient
dF

i (Os ,Ot) is the feature-based similarity distance acco
ing to the i th dimensional representative featur
dS

i (Os ,Ot) is the semantic distance according to thei th
keyword of the content interpretation,n is the total number
of dimensions of visual features, andm is the total number
of keywords used for content interpretation.

dF
i ~Os ,Ot!5(

j 51

n

(
k51

n

bjk~ f s, j
i 2 f t, j

i !~ f s,k
i 2 f t,k

i !, ~10!

dS
i ~Os ,Ot!5H 0, if Os

i 5Ot
i ,

1, otherwise,
~11!

where f s, j
i is the i th dimensional visual feature of thej th

video sample, and ann3n matrix Wi5@bjk# defines agen-
eralized ellipsoid distance.

The aim of MultiView is to provide maximum support i
bridging the semantic gap between low-level visual fe
tures and high-level human concepts given by text ann
tion, thus an integrated video content classification te
nique is used. We first assume that the video contents in
Journal of Electronic Imaging / October 2001 / Vol. 10(4) / 903
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Fig. 9 Knowledge-based tree structure for hierarchical video classification and categorization.
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database can be classified into a set of semantic clu
through a knowledge-based hierarchical partition pro
dure, shown in Fig. 9. The semantic video classification
first be obtained by clustering video contents according
the keywords of their text annotation, and these video c
tents can then be indexed and accessed through the
words of the text annotation. On the other hand, the vid
contents can also be categorized into a set of the s
semantic clusters according to the similarity of their visu
features. Since the video similarity on low-level visual fe
tures does not correspond directly to the similarity on hig
level concepts from a human point of view, the results o
tained by these two different video classificatio
approaches must be integrated to support more effic
video database access. There are four possible ways t
tegrate the results obtained by these two different vid
classification approaches.

1. Good matching video contents, which are similar ac-
cording to both the keywords of text annotation a
low-level visual features, should be put into the sa
semantic cluster. This means that the semantic s
larity of these video contents corresponds directly
their weighted feature-based similarity.

2. Bad matching video contents, which are similar ac-
cording to the keywords of their text annotation b
dissimilar according to their low-level visual fea
tures, should be put into the same semantic clus
However, their dimensional weighting coefficien
should be renormalized, so that their weight
feature-based similarity corresponds in a direct w
to their semantic similarity from a human point o
view. Since different visual features may play diffe
ent degrees of importance in making the final de
sion on the semantic similarity from a human point
view, a learning-based optimization technique can
used to choose the suitable dimensional weight
coefficients.

3. Wrong matching video contents, which are similar ac-
cording to their low-level visual features but dissim
lar from a human point of view, should be put in
different semantic clusters. A learning-based optim
zation procedure is performed for reweighting t
importance of their different dimensional visual fe
tures, so that these dissimlar video contents from
human point of view can have large weighte
feature-based distances.

4. Good mismatching video contents, which are dissimi-
ctronic Imaging / October 2001 / Vol. 10(4)
rs
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lar according to both the keywords of text annotati
and low-level visual features, should be put into d
ferent semantic clusters.

The good matching and good mismatching video conte
are taken as positive examples. The wrong and bad ma
ing video contents are taken as negative examples.
positive and negative examples, which are taken as the
put of a learning-based optimization processor, are use
select the suitable dimensional weighting coefficients,
that the weighted feature-based similarity can corresp
directly to its concept-based similarity. Since the seman
similarities among these labeled video contents are giv
the system then learns from these video content exam
and selects the suitable dimensional weighting coefficie
shown in Fig. 10.

6 Multilevel Video Indexing and Access

The objective of MultiView is to provide a reasonable s
lution to the problems related to the up and coming n
worked video database systems. Three kinds of video d
base accessing approaches can be supported by MultiV
query by example, query by keyword, and random brow
ing. Many tree structures have been proposed for index
high-dimensional data,17–19 however, it is widely accepted
that the efficiency of these existing high-dimensional
dexing structures deteriorates rapidly as the number of
mensions increases. Therefore, more efficient hi

Fig. 10 Relationships among the video contents in the database
and classification of the data points in feature space and in concept
space.
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Fig. 11 Multilevel video indexing structure and the distributed storage disks in MultiView.
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dimensional video indexing technique should be propo
before video search engines can be provided.

The existing tree structure divides the high-dimensio
space into a number of subregions, and each subregion
tains a subset of objects that can be stored in a small n
ber of disk blocks. From this point of view, the multilev
video modeling and partitioning techniques in MultiVie
have also provided a multilevel video representation a
indexing structure. We now study how semantic video cl
tering and multilevel video representation techniques
be effectively combined to support more efficient hig
dimensional video indexing.

Based on the proposed multilevel video model, the vid
contents in a database are first classified into a set of
mantic clusters by using the integrated video cluster
technique introduced in Sec. 5. In order to support m
efficient query processing, each semantic cluster is t
partitioned into a set of subclusters by discovering the
teresting relationships and implicit characteristics. Ea
subcluster may consist of a set of subregions, so that lin
scanning can be used for generating the indexing poin
of the high-dimensional video contents in the same sub
gion. This hierarchical partitioning of a semantic clus
will end when the number of multidimensional video co
tents in each subregion is less than a predefined thresh
logN!Di , whereN is the total number of multidimensiona
video contents in the subregion, andDi is the number of
dimensions of the representative features for the co
sponding subregion.

The indexing structure consists of a set of separate i
ces for the clusters and each cluster is connected to a s
root node as shown in Fig. 11. The indexing structure
cludes a set of hash tables for different layers of a vid
database: a root hash table for keeping track of informa
about all the clusters in database, a leaf hash table for e
cluster for preserving information about all its subcluste
a second-leaf hash table for each subcluster for kee
information about all its subregions, and a hash table
l
n-
-

-

n

r
s
-

d,

-

-
le

h

g
r

each subregion for mapping all its data points to the as
ciated disk pages where the videos reside, as shown in
12.

The root hash table keeps information about all the
mantic clusters, and each root node may consist of a se
leaf nodes to access its subclusters. Recall that the re
sentative features associated with each root node are
centroid, radius, meta features, semantic features, dim
sional weighting coefficients, number of leaf nodes, a
representative icons. Each leaf node is also represented
set of parameters. Hash tables for the clusters, subclus
and subregions are devised where the keys are the re
sentative features that characterize their centroids and
diis, and the entries are the pointers to the lower-level co
ponents of the hierarchy.

Fig. 12 Multilevel video query processing in MultiView.
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The hash table for each subregion is built by mapping
of its videos to the associated disk pages, and an inde
pointer is assigned for each video. Each subregion cont
a subset of videos that can be stored in a small numbe
disk blocks, logN!Di . Hash tables for the objects in
subregion can be devised where the keys are their repre
tative features and the entries are pointers to the disk p
where the videos reside.

To improve input/output~I/O! efficiency, all the seman
tic clusters are stored in a set of independent disks, sh
in Fig. 11. To answer a query, only the semantic clust
that are relevant to the query object are retrieved. The
ditional high-dimensional indexing trees, such asR tree, X
tree, and SR tree, can also be used for indexing these h
dimensional video contents in the same subregion. H
ever, it is widely accepted that ifDi@ logN, then no neares
neighbor algorithm can be significantly faster than a lin
search. Therefore, a linear scanning technique is use
obtain the pointers for these video contents in the sa
subregion.49

In order to answer a query by example, the similar
search is performed in three steps, as shown in Fig. 12

1. It performs awhere-am-Isearch to find out which
subregion the given query object resides in. To
this, the search engine first tries to find the clusterCi
that is relevant to the query objectO. Their weighted
feature-based similarity distancedF(O,x̄c

i ) is also
calculated as

dF~O,Ci!5dF~O,x̄C
i !5(

j51

Di 1

aj
dF

j ~O,x̄c,j
i !, ~12!

wheredF
j (O,x̄c, j

i ) is the similarity distance betwee
the query objectO and the centroid of clusterCi

according to their j th dimensional features. Th
query processor returns the clusterCk , which has the
smallest weighted feature-based similarity distan
with the query objectO or where the associated sim
larity distancedF(O,Ck) is no more than the radiu
fc

k of Ck .

dF~O,Ck!5 min
iP@1,2,...,q#

$dF~O,Ci% ~13!

If such a clusterCk exists, the query processor find
the associated subcluster in the clusterCk which is
most relevant to the query objectO, and then finds
the most relevant subregion by invoking a simil
searching procedure.

2. It then performs anearest-neighborsearch in the rel-
evant subregion to locate the neighboring regio
where the similar objects may reside. Since a mu
dimensional linear scanning technique is used
generating the pointers for the objects in the sa
subregion, the weighted feature-based similarity d
tances between the query objectO and all the objects
in the selected subregion are calculated. The sea
engine then returns a set of ranked objects which
relevant to the query object.

3. It visualizes the icon images of the ranked query
sults. The users are then in a final position to mak
906 / Journal of Electronic Imaging / October 2001 / Vol. 10(4)
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decision as to which one they really want by brow
ing the content summaries of these ranked query
sults.

The time for thewhere-am-IstepTs , that is, finding the
most relevant subregion hierarchically, is bounded byn
1 l 1k)•Ts1

, whereTs1
is the time needed to calculate th

weighted feature-based similarity distance between
query object and the centroid of a cluster, subcluster,
subregion.n indicates the total number of clusters in th
database,l denotes the total number of subclusters in t
relevant cluster, andk is the total number of subregions i
the relevant subcluster. The time for thenearest-neighbor-
searchingstepTc , that is, finding the nearest neighbor
the query object in the relevant subregion, is bounded
S•Ts1

, whereS is the total number of objects in the re

evant subregion. The time for theranking stepTr , that is,
ranking the objects in the relevant subregion, is bounded
O(S logS), whereS is the total number of objects in th
relevant subregion. Therefore, the total search time of
multilevel query procedure is bounded by

T5Ts1Tc1Tr5~n1 l 1k1S!•Ts1
1O~S logS!. ~14!

Due to the semantic gap, visualization of the query res
in video retrieval is of great importance for the user
make a final decision. Since clusters are indexed indep
dently, users can also start their query by first browsing
clusters to find the one relevant to their query, and th
send their query to this relevant cluster. Thisbrowsing-
based-queryprocedure can provide more semantic resu
based on the user’s concept because only the users k
exactly what they want. Moreover, this browsing-bas
query technique can speed up query by example.

Our semantic clustering technique and multilevel vid
representation, summarization, and indexing structures
very suitable for fast browsing. Moreover, a seman
manual text title and a set of icon images are associa
with each cluster, and these semantic titles or icon ima
can then be categorized into the form of a table to prov
an overview of the video contents in the databases. T
categorization of video contents into semantic clusters
be seen as one solution for bridging the gap between l
level visual features and high-level semantic concepts,
it can be helpful both in organizing video databases and
obtaining automatic annotation of video contents.

Three kinds of browsing can be provided: browsing t
whole video database, browsing the selected semantic c
ter, and browsing the selected video sequence. Brow
the whole video database is supported by arranging
available semantic titles into a cluster-based tree. The v
alization of these semantic clusters~root nodes! contains a
semantic text title and a set of icon images~semantic visual
templates, seeds of cluster!.

Browsing the selected semantic cluster is supported
partitioning the video contents in the same cluster into a
of subclusters, and the icon video content for each subc
ter is also visualized. Browsing the selected semantic c
ter, which is supported by arranging the available sema
icon video contents into a tree, is the same as the proce
of browsing the whole database. Browsing a single vid
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MultiView: Multilevel video . . .
sequence is, in some respects, a more complicated prob
The shot-based abstraction of video content, which is c
structed by a set of key frames or key VOPs, is used
provide fast browsing of a single video sequence.

Our multilevel video modeling structure can also gu
antee more efficient video content description schem
High-level MPEG-7 description schemes can be develo
based on our multilevel video representation and index
structures.27,50–52

7 Conclusion

An integrated content-based video retrieving and brows
approach, called MultiView, was presented. MultiView f
cuses on multilevel video modeling and representation
guarantee high-dimensional video indexing. The multile
video indexing structure used in MultiView cannot on
speed up query by example but can also provide more
fective browsing. Moreover, high-level MPEG-7 video d
scription schemes can be supported by our multilevel vi
representation and indexing structures.
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