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Abstract—\We propose a new automatic image segmentation regions [5], [6]. Edge detectors used in these techniques can
method. Color edges in an image are first obtained automatically pe simple ones such as the Sobel or Roberts operators, or
by combining an improved isotropic edge detector and a fast more complex ones such as the Canny operator. The output
entropic thresholding technique. After the obtained color edges - . .
have provided the major geometric structures in an image, the of most exlstlng edge_detectors can only prO\_/lde candidates
centroids between these adjacent edge regions are taken as thdor the region boundaries, because these obtained color edges
initial seeds for seeded region growing (SRG). These seeds areare normally discontinuous or over-detected. However, the
then replaced by the centroids of the generated homogeneousactual region boundaries should be closed curves. Therefore,
image regions by incorporating the required additional pixels some post-procedures, such as edge tracking, gap filling,

step by step. Moreover, the results of color-edge extraction and . S .
SRG are integrated to provide homogeneous image regions with smoothlng,. and th'””'”Q' should be performed to obtain the
accurate and closed boundaries. We also discuss the applicationclosed region boundaries. All of these post-procedures are

of our image segmentation method to automatic face detection. very time-consuming; converting the edge candidates to the
Furthermore, semantic human objects are generated by a seededregion boundaries is thus not an easy task. The time-consuming
region aggregation procedure which takes the detected faces aSpost-procedures can be avoided by integrating the results of
object seeds. the boundary-based approach and those of the region-based
~Index Terms—Edge detection, face detection, image segmenta-approach.
tion, seeded region growing (SRG). 3) Region-based techniquegely on the assumption that ad-
jacent pixels in the same region have similar visual features such
|. INTRODUCTION as grey level, color value, or texture. A well-known technique
. . of this approach mplit and mergg7]—[9]. Obviously, the per-

UTOMATIC image segmentatl_orj, one ofthe fur_1dame_nt J)rmance of this approach largely depends on the selected ho-

problems of early computer vision, has been intensive ogeneity criterion. Instead of tuning homogeneity parameters,

;tudied in the past [1]. The existing automatic image segmenja- '« o ded region growing (SR@chnique is controlled by a

._erty that each connected component of a region meets exactly
. . 'Yne of the seeds. Moreover, high-level knowledge of the image
that adjacgnt p|xgls whosg value (grey level, color value, te omponents can be exploited through the choice of seeds. This
ture, etc) I|.es within a certain rangelb elong to the same class' operty is very attractive for semantic object extraction toward
Thresholding techniques can obtain good segmentation of i ntent-based image database applications. However, SRG suf-

ages that include only two opposite components. Since th fs from another problem: how to select the initial seeds auto-

_technlqut?]s negle_ct ilfl t_he f?at!al relat|;)hnstht|)F mft;rrgatu:r;oft atically for providing more accurate segmentation of images.
Images, they are neflcientiorimages that biurat object boun “4) Hybrid techniques which integrate the results of

aries, or for multiple image component segmentation. For a i Gundary detection and region growing, are expected to pro-
view of thresholding techniques, readers are referred to [3] a\r)i(ae more accurate segmentation of ima,ges [11]-[13]. Pavlidis
[4]. . . et al. describe a method to combine segments obtained by
.2) Boundary-based te(_:hmquesuse the assumption thatusing a region-growing approach, where the edges between
pixel values change rapidly at the boundary between tVilggions are eliminated or modified based on contrast, gradient
and shape of the boundary. Haddon and Boyce generate regions

. . . . by partitioning the image co-occurrence matrix and then
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are used as the initial seeds for the SRG procedure. The t . Gradient _¥ H .

ance of the paper is organized as follows. An improved isotrog -

color-edge detector is proposed in Section Il . A seeded regi| .. U Gradient _U |_>| gy |_> Edge Map |

growing technique, as well as an algorithm to select the see

automatically, is introduced in Section Il . Application of the v Gradient _V |—>‘ Edges_V

proposed automatic image segmentation technique to face

tection is discussed in Section IV . We present diverse expi [ Paormbased ] [,h,esho,dmg_bdsed [ Oupnt ]
Fusion

Fig. 1. Major steps in our color-edge detection technique.

Gradient Calculation Edge Detection

imental results in Section V . Conclusions are made in Se
tion VI.

[I. COLOR-EDGE EXTRACTION
What are the edges in a digital color image? A first intuitivedge extraction procedure. The latter property is very attractive

answer is that the respective brightness values of two nei R r.eal-tlme Image processing systems. i
boring pixels in an edge should be significantly or steadily dif- >nce the chrominance components U and V are normally in
ferent. An alternative edge characteristic is that the colors of tfg!-resolution of the luminance , a color image of CIF-size,
neighboring pixels are significantly different, even though theiPr example, |nclu_de53(52 x 288) pixels of the Y component
brightness values are very similar. Therefore, both changes?fid (76 x 144) pixels for each of the U and V components.
the brightness and changes in the color betweem neighbori Iurr'nnanc.e componept Y _Of a cc_)Ior Image may be tgken as
pixels should be exploited for more efficient color-edge extra@ Wo-dimensional (2-D) light-intensity functiai{z, y/), which
tion. contains P x Q) pixels, each with a value of brightness, i.e.,
Many robust and complex color-edge detection techniqud&y 1evel, from 0 tolV. Grey level 0 is the darkest and grey
have been proposed [14]-[18]. These sophisticated techniqlfé’?lN is t_he bnghFest. I.n our study, thg task of edge extraction
can provide highly accurate results (a thorough discussion'dfi° classify the pixels into two opposite classedgeversus

this body of previous work is, however, beyond the scope Hpnedge , , i
this paper). We choose instead to implement a more simpIeThe second-order neighborhood is used to describe the re-

though less accurate isotropic edge detector for identifying tEONShip between the current pixel, ) and its neighboring
An edge may pass through

geometric structures of an image. The detected edge results %ﬁls’ as shown in Fig. 2(a) .

then be improved by integrating them with the results ofan S secondjorder neighborhooq of.a pixel in one of th_e four
procedure. representative patterns shown in Fig. 2(b), namely horizontal,

There are two categories of isotropic edge detectors: grtical, northeast diagonal, and northwest diagonal. For pixel
radient operators and 2) second derivative operators. Gradi @), HOE(z,y), VOE(z,y), NOE(z,y) and SOE(z, y)
operators, such as the Roberts, Prewitt, and Sobel operaftifote theedge strengthinduced by the horizontal, vertical,
[19]-[21], detect the edges by looking for the maximum an rthea;t diagonal, and northwest diagonal edge patt_erns,
minimum in the first derivative of the luminance of an imagd SPECtively. These edge strengths are calculated as a weighted
The second derivative operators, such as the Marr-Hildreth atit]" of the _plxel_vall_,les iV (, y), where the weight coeffi-
Marr-Poggio operators [22], [23], search for zero-crossinGi€nts are given in Fig. 2(b)
in the second derivative of the luminance of an image to find HOE(z,y) =|I(x —1,y—1)+2I(z,y—1)
the edges. Despite various shortcomings of these isotropic ’ +I(a:+i y—1) —I(a:7— Ly+1)
edge detectors pointed out by Haralick [24] and Canny [25], Y y’+ )= Iz +1,y ’+ 1|
they remain popular because human beings usually do not VOE(x,y) = |I(x _’1 y— 1)+ 21(x 7 1,9) 1)
show strong directional preferences when detecting edges ’ +I(x_’1 v+ D) —I(w+1’u— 1)
or boundaries [26]. However, most existing isotropic edge —2I(x+7lty) Iz 1 y’+‘1)|
detectors consider only the horizontal and vertical edge pat- NOE(z,y) =|2I( _’1 y—1) +I(;€ y—1)
terns. We develop an improved isotropic color-edge detector ’ (o — 1’y) Iz 1’y)
by including more potential edge patterns and integrating a Iz y—|—71) _ 2I($+’1 g+ 1)
fast entropic thresholding tec_hniq_ue. The major steps of the SOE(z,y) — |I(a:,;;— 1)+ 20( + 1,.;J —1) (2)
proposed detector are shown in Fig. 1 (4 Ly) — 2[(z — 1y + 1)
A. Edge Detection —2@ =Ly = Hay+ 1)l

Although the perceptual color spac&E(Lab) HVC, and Wherel(z — 1,y — 1) indicates the grey level of the pixel at
HSV) may be more suitable for image representation and angl-— 1,y — 1).
ysis [37], the YUV color space is selected in this paper, for The local maximum edge strengtof pixel (z,y),
two reasons. First, the chrominance components (U and V) 3O E(z,y) is defined as the maximum of the four edge
explicitly separated from the luminance (Y) component in th&rengths; i.e.,
YUV model. Second, the YUV space is typically used in most
image and video coding standards and therefore the compl%LOE(% y) = max{HOE(x,y),
tion burden for format transformation will be avoided in the VOFE(z,y), NOE(z,y), SOE(zx,y)}. 3)
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Fig.2. (a) Second-order neighborhad, y) of current pixel =, y). (b) Weight coefficients for calculating tiéO E, VOE, NOE, andSO E edge strengths
of potential edge patterns.

Given an optimal threshold, e.dl},, the Y function classi- wherel/OE(z/2,y/2) andV OE(x/2,y/2) indicate the local
fies the pixels on the luminance component into two oppositeaximum edge strength of the chrominance pixékd®, v /2)
classesedge pixelsersusnonedge pixelsas andZ,, andT, indicate the respective optimal thresholds. These
optimal thresholds are also determined automatically by the
fast entropic thresholding technique described in Section II-B.
The parameter§/ OE(i, j) and VOE(¢, j) are calculated on
the basis of the four potential patterns as described above but
(4)  on the half-resolution chrominance component spaces.

Edge results for the three color components are then inte-
grated through the fusion rule, shown in (7) at the bottom of the
Rage. Pixel(z,y) is classified as an edge pixel if it is so classi-

ponent, the edges in a color image can be defined when fied by e_ltleastone of its three_cplorcom_ponents, in which case
chrominance values of neighboring pixels significantly differ(#, v) is set o 1. Otherwise, itis classified as a nonedge pixel

Therefore, an analogous edge detection procedure is further G&1d £(z; ) is set to 0. , o
formed on the chrominance components U and V. Since the! Ne obtained color edges can provide a simplified image that

chrominance components U and V are normally in half-resBreserves the domain geometric structures and spatial relation-

lution (P/2 x Q/2) of the luminance component Y with sizeShips found in the original image. They are normaligcon-

(P x (), four neighboring luminance pixels have the samiinuousor over—detect_edThus, they cannot be used as image
chrominance. as content descriptors directly. However, they are very useful for

) _ _ , B providing thestructural seedsf an image.
1, edge pixel if UOE(3,%)>1T,

x u) B. Fast Entropic Thresholding

272 _ To automatically obtain an optimal threshold that is adap-
) <L, tive to the image contents, tlemtropic thresholding technique
(ﬁ) is used. The technique is shown to be highly efficient for the
(1, edge pixel if VOE(3,%5) 2T, two-class data classification problem [27], [28]. To illustrate, let
Vi (f g) _ the local maximum edge strength of pixels have rarigéA].
B In an input image, assume that there #reixels whose local
0, nonedge pixel if VOE(3, %) <71, maximum edge strength has the valyé € [0, M]. Given a
(6) threshold, e.g1, the probability distributions for the edge and

1, edge pixel if MOE(z,y)

> 17,
YE(xvy): _
< dy.

0, nonedge pixel if MOE(z,y) < T,

The optimal threshold, is automatically determined by tfest
entropic thresholding techniguas described in Section II-B .
Besides being induced by changes in the luminance co

UE(
0, nonedge pixel if UOE(3,

Nl

N8
ol

1, edge pixel it (Ve(e,y) =1)UUEe(3,5) = DUVE(S, 5) =1)
E(z,y) = 7
0, nonedge pixel otherwise

7
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nonedge pixel classes can be defined, respectively. As they tiopies can then be exploited as
to be regarded as independent distributions, the probability for

) ) ! _ T+1 fi ] fi
the nonedge pixel®, () can be defined as H,(T+1)=- Z o ol +1) log Pol + 1)
= 0 0
Puiy= =2 0<i<T (8) __ @)
> h=0 1 Po(T +1)
T4+1
where> T f; indicates the total number of pixels that have > i 10g{ fi  R(T) }
the local maximum edge strength features in rahge: < 7. — Py(T) Po(T) Po(T'+ 1)
The probability for the edge pixeR. (i) can also be defined as Py(T) Frat : Frot
. fi . B R N U L Ny
PG(Z)IM4}’ T+1SLSM (9) Po(T) Po(T) (15)
= v _ og
S Pl +1) 2Rl +1)
wherey",. .., fi indicates the total number of pixels that have M P P
the local maximum edge strength features inthe réhgel < H (I'+1) = — Z *—log k
) ; . - ‘ P (T+1) P(T+1)
i < M.Theentropies forthese two pixel classes are then given as i=T+42
T ___ @)
Ho(T) = — 3" Pu(i)log Pa(i) (10) AT 1)
=0 . Z fz log fz Py (T)
wo | L, P(T) P LA AT +1)
H(T)=— > P.(i)log P.(i). (11) ZE&U ; ;
i=T+1 __n T+ o, T+1
The optimal threshold vectdf’ selected for performing the PT+1) 0 AT+ 1) - AT +1)
: " ¢ P(T) | B(D)

nonedge and edge pixel classification has to satisfy the fol- - og .
lowing criterion functions [29]: (T +1) ¢ (T +1)
_ Observe that the complexity of the recursive calculations is re-
H(T) = Teong M {Hn(T) + He(T)} - 12)  guced toO(n) by only adding the incremental part at each it-
eration step. For the partition at threshdld+ 1, the re-nor-

. o 5 : / Ul alized parts are always calculated from @te- 1 in the ex-
tion complexity isO(M ") because it takeS(M/) time to obtain 4 stive search algorithm. But in the proposed fast algorithm,
the two entropies for each element and t_hereMrepotenngl the re-normalized parts are only calculated fréhto 7" + 1,
elements. To reduce the search complexity, a fast algorlthmr'rll%lking it much more efficient. Experimental results have con-

proposed that recursively calculates the probabilifiet) and - firmeq that the proposed search algorithm is very suitable for
P.(4) and the entropie#l,,(1") and H.(1"), where the compu- .o\ time image segmentation.

tation burden is reduced by calculating the re-normalized part

repeatedly. C. Performance Evaluation
We first define the total number of the pairs in the nonedge

and edge classes [the re-normalized parts used in (8) and 898

when the threshold is set {6

(16)

o evaluate the actual performance of the proposed color-edge
ector, we tested many images which include variant image
components. Since ours is an isotropic edge detector, we com-
T pare it with several other well-known isotropic edge detectors.
P(T) = Z Ju For the traditional isotropic edge detectors, which do not provide
h=0 automatic selection of the optimal thresholds, we determine their
M thresholds by our fast entropic technique.
n(T) = Z Ju- (3) Fig. 3(a) gives the original image of “Akiyo.” Fig. 3(b) shows
h=T+1 the extracted edges by performing our color-edge detector on
The corresponding total number of pairs at global thresiigiti  the three color components. Fig. 3(c) shows the extracted edges

can be calculated as by performing our edge detector on the luminance component
T T only. Observe that our color-edge detector can provide more
_ _ accurate results — some obvious edges of the color monitors

FolT 1) hz::O Jn hz::O It fr in the image are missed if the edge detector is only performed
=Po(T) + fri1 on the luminance component. The results obtained by the Pre-
M v witt, Sobel, Laplacian, and Roberts edge detectors are given in

P(T+1) = Z fr = Z fr = fra Fig. 3(d)—(g), respectively. Notice that our isotropic color-edge
heT 2 heT 1 detector can provide more potential edges as compared with

=P, (T) — fry1. (14) these other detectors under the same conditions.

Similar results for “Foreman,” “Mobile,” “Flowergarden,”
The recursive iteration property for the two corresponding enand “Hallmonitor” are given in Figs. 4—7, respectively.
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Fig. 3. Edge detection performance comparisons based on image “Akiyo”: (a) original image, (b) color edges obtained by our technique, (c) ldgeimance e
obtained by our technique, (d) edges obtained by the Prewitt operator, (e) edges obtained by the Soble operator, (f) edges obtained by theckafaaad op
(g) edges obtained by the Roberts operator.

%] m ful

Fig. 4. Edge detection performance comparisons based on image “Foreman”; (a) original image, (b) color edges obtained by our technique,égdgesnanc
obtained by our technique, (d) edges obtained by the Prewitt operator, (e) edges obtained by the Soble operator, (f) edges obtained by theckafacad op
(g) edges obtained by the Roberts operator.

lll. REGION-BASED IMAGE SEGMENTATION exactly one of the seed$. Moreover, the regions are chosen
to be as homogeneous as possible.

We have provided simplified geometric structures of the
image regions using our color-edge detector. However, theAs\e
color edges are normally discontinuous or over-detected. Thus
they cannot be used directly as the image content descriptorsAn obvious way to extend the SRG technique to automatic
In the boundary-based image segmentation approach, sevenalge segmentation is simply to automate the process of
post-procedures, such as edge tracking, gap filling, smoothisged selection. One advantage of SRG is that the high-level
or thinning, should be performed on the detected edge poirkaowledge of semantic image components can be exploited to
These post-procedures are expensive. On the other haselect the suitable seeds for more meaningful region growing.
region-based image segmentation techniques can provides property is very attractive for content-based image database
the closed region boundaries but the boundaries may be applications. Since most geometric structures of the image
very accurate. We try to integrate the advantages of both tlegions have been provided by the obtained color edges, the
boundary-based approach and the region-based approaditial seeds for SRG can be generated from these color edges
including avoiding the complex post-procedures required lautomatically.
the latter approach. We select the SRG technique for regionTo this end, the connected edge pixels are first merged to-
growing. whose initial seeds can also be computed automagéether and labeled with the same symbol. A minimum spanning
cally from the obtained color-edge regions. Given the seediee is used for representing the relationships among the adja-
e.g.,51, Sz, ..., 9¢, SRG segments an image into regions, witbent edge regions [31]. Theentroid (X7 ;, Y?;) between two
the property that each connected component of a region mesd§acent labeled edge regiohs and £;, which is defined as

Automatic Seed Generation
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ol bl ol

]

Fig.5. Edge detection performance comparisons for image “Mobile”: (a) original image, (b) color edges obtained by our technique, (c) lumisarixteiadde
by our technique, (d) edges obtained by the Prewitt operator, (e) edges obtained by the Soble operator, (f) edges obtained by the Laplaciad (pezdiygsa
obtained by te Roberts operator.

Fig. 6. Edge detection performance comparisons based on image “Flowergarden”: (a) original image, (b) color edges obtained by our technigaagéc) lum
edges obtained by our technique, (d) edges obtained by the Prewitt operator, (e) edges obtained by the Soble operator, (f) edges obtaineddiydperzapiac
and (g) edges obtained by the Roberts operator.

the algebraic average of the edge pixels in the correspondingegated homogeneous regioRs, R, ..., and ik, by incorpo-
gions is calculated as rating the additional pixels step by step. The pixels in the same
region are labeled by the same symbol and the pixels in variant
Xe. — Z(WG{E«EJ-} N regions are labeled by different symbols. All the labeled pixels
w7 E(L.U)G{E{,Ej} s(@.y) are callecallocated pixelsthe unlabeled pixels are calledal-
(17) located pixelsLet H be the set of all unallocated pixels which
ve Z(I,we{Ei,Eﬂ y are adjacent to at least one of the labeled regions [10]
" E(a:,y)G{Ei,Ej} 6(z,y) q q
whereé(z,y) = 1if and only if (x,y) € {E;, E,}; otherwise, H = {(x’y) 2 UlRi|N(x’y) n UlRi # @} (18)

8(x,y) = 0. The boundary for the same homogeneous region

may be partitioned into several adjacent edge regions becaygre N(z, ) is the second-order neighborhood of the pixel
the obtained color edges are normally discontinuous. Thus fhe4), as shown in Fig. 2(a). Foir,y) € H, we have that
centroids between several adjacent edge regions may be VETY:, ) meets just one of the labeled image regidhsind de-
close and their colors may be very similar. When that happefipe ,(z, ) € {1,2, ..., ¢} to be that index such thaf(z, ) N
these neighboring similar centroids are merged into one. Thg(m o) 7 0. d(z,y, R;) is defined as the difference between

refined centroids are taken as the initial se€dsS, . . ., 55, for  the testing pixel at#, v) and its adjacent labeled regidf.
SRG and these seeds are updated step by step by incorporafingy, r;) is calculated as
the new points.
d(z,y, B;) = |(z,y) — I(X7, V)| + Jw(z, y) — (X7, YY)

B. Seeded Region Growing (SRG e e

_ 9 9 (5RG) | o, y) — 5(XE V)| (19)

Given the set of seed$;, 5, ..., S;, each step of SRG in-

corporates one additional pixel into one of the seed sets. Thedeere(x, y), w(z,y), andv(z,y) indicate the values of the

initial seeds are further replaced by the centroids of the gehree color components of the testing pixel4), respectively,
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Fig. 7. Edge detection performance comparisons based on image “Hallmonitor”: (a) original image, (b) color edges obtained by our technigonan¢e) lumi
edges obtained by our technique, (d) edges obtained by the Prewitt operator, (e) edges obtained by the Soble operator, (f) edges obtaineddydpezaptac
and (g) edges obtained by the Roberts operator.

(X, Y5, u(Xg,Ye), ando(X$,Y°) represent the average There is also a possibility that some of these image regions
values of the three color components of the homogeneous regima actually parts of the same homogeneous region but have
R;, respectively, andX?, Y;°) is the centroid of?;. If N(x,y) been split because the initial given seeds for them are different.
meets two or more of the labeled regiog$ys, v) takes a value Hence, the adjacent regions, which do not have a “significant”
of ¢ such thatV (x, y) meetsR; andd(x,y, R;) is minimized  edge between them, are also merged together to form a bigger
region. This region merging procedure is managed by a min-
d(p(z,y)) = ( m)ifelH{d(%y’ R)lie{l,....,q}}. (20) imum spanning tree, which is used for representing the relation-
oY ships among the adjacent regions. The region relationship graph
The SRG procedure is repeated until all the pixels in the imagéthe adjacent regions can be further exploited in managing the
have been allocated to the corresponding regions. The definitiggeded region aggregatigmocedure.
of (18) and (20) ensures that the final partition of the image is

divided into a set of regions as homogeneous as possible on th@y. Face DETECTION AND HUMAN OBJECT GENERATION

basis of the given constraints. . the h . ith te boundari
The results of color-edge extraction and SRG are integratTéoG Iven the homogeneous regions with accurate boundaries,

to provide more accurate image segmentation. The bounda|t %face dete_ctlon techbnlqtui is used tho deter;nlne Véh'(;hkhomt%_
(boundary pixels) of each homogeneous region are first ek 'cous f€gIONS can be laken as a human face. by taking the

tracted by determining the first and last pixels for each roEFteCted La_cets dmma? objec;[] seedi_an :utolmatlg siﬁmantrl]c th
and column for the same region and then these first and | an object generation scheme 1S develope roug €

pixels are taken as the boundary of the corresponding regigﬁ.eded region aggregation procedure.

There are four possibilities by integrating the region boundaries | )

(obtained by SRG procedure) and the color edges (obtairféd SKin Color Map Generation

by the color-edge detector). Thmundary pixelswhich are In existing skin color segmentation methods, all visible colors
detected as both the region boundaries and the edges, shouldrbepartitioned into two opposite groupkin colorversusnon-

pixels on the final region boundary. Thiegion pixels which  skin color[32]-[34]. However, two pixels near the boundary of
are not detected as both the region boundaries and the edgeskin region can be classified into different groups, although
should be the pixels inside a region. Timecertain pixelsvhich  their color difference is almost unnoticeable by a human viewer.
are detected as the region boundaries but are not detected adtbe=over, there is a lot of small holes in the skin color regions
edges, may be the discountinuous points and should be refimed a post-procedure is needed to remove these holes. However,
on the basis of their neighbors. The uncertain pixels whic¢he facial features, such as eyes, mouth, nose etc., are also de-
are detected as the edges but are not detected as the retgoted as the holes in the skin color segmentation procedure. Itis
boundaries may be the over-detected edge pixels and shawldeasonable to remove these facial features because the objec-
be refined on the basis of their neighbors. The color-edgjee of face detection is to extract these facial features for face
detector as described in Section Il is further performed on thecognition.

neighborhoods of these uncertain pixels by using a relaxedTo avoid these unnatural and instability problems, skin color
thresholding procedure [38]. As a result, the region boundari@sgmentation is not based on the pixels, but on the obtained ho-
are eliminated or modified on the basis of th&seal edges mogeneous regions. Following the approach of &val. [35],
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we employ a semi-automatic skin color map generation algo- Y A
rithm, in which the map is generated from a given set of training
face images. For each visible color pdintv) in the color space
(U, V) (i.e., (u,v) is a pair of chrominance values), we assign
a probability, Psyin (1, v), of how much(u, v) is likely to corre-
spond to the skin color

(Xiet, Yiop ) / (Xight, Y,,.)

top-

_ q(w,v)
Pegin(u,v) = N(u,v) (21)

where q(u,v) denotes the number of times the color point Ko+ Yaoun)
(u,v) appears within human-identified face regions in the (i Yo - x
training images, andV(u,v) denotes the total number of

times (u,v) appears anywhere in the training images (i.e., Fig. 8. Definition ofrectangular boyof a face candidate.
including background, eyes regions, mouth region, etc). Since
the chrominance components should be narrowly distributed
across a human face region, the span interval for the generated
skin color map P.yin(u, v) , should be very compact.

B. Skin Region Detection

Given a pixel, e.g.(z, y), inahomogeneous region generated
as discussed in Sections Il and 11, its skin color likenégs:, v)
is computed as

S(.’L’, y) = Pskin(u(xa y)’ ]/(;1;" y)) (22) Fig. 9. Front-view face model.

where Pun(-,-) is the generated skin color mapwhereX.x and.X;ig, indicate the smallest and largestoor-
(w(z,y),v(z,y)) indicates the values df andV of the pixel dinates of the region’s boundary pixels, respectively, Bagl.
(z, ), respectively. Thaverageskin color similarity p;, foran andY;.,, indicate the corresponding smallest and largesb-
identified homogeneous region, e.§;, can then be defined asordinates, respectively. In our experimental procedure, we take
the acceptable range of aspect ratito be [0.4,0.85].
_ Z(ac,y)eRz- S(@,y) (23) Second, we applyskin area ratio filterto the face candidates
' Nk, remaining after the first step. The basic idea is that the rectan-
- . . , gular box of a face candidate, as shown in Fig. 9, should contain
whereNr, indicates the total number of pixels inregifip. The o gyin color region (black region the figure) as well as several

homogeneous regions whose average skin color similarities Abnskin color regions (white color regions that correspond to the

above a given threshold, e.g., are then taken as the skin COIOreyes, eyebrows, mouth, background, etc.). 3kia color ratio

regions v, which is defined as the ratio between the skin color pixels
p; > @i, R; isskin region and the total pixels in the rectangular box, should be within an
(24) expected range
pi < @i, R;isnonskin region. N_skin_pixel 6
. . . .. V=
In practice, is selected on the basis of the set of training face |Yaown — Yiop| - | Xright — Xiett]

images used for generating the skin color map. S ) )
where N_skin_pixel indicates the number of skin color pixels

C. Face Extraction in the corresponding rectangular box. In our experimental pro-

Of course, not all skin color regions are human face regio .dure, we require that_ the skin area rati®f the selected
{man face region candidates to be in [0.65,0.8].

Identifying those skin color regions that resemble a face regi
fying d d Third, we apply arellipseshape filter to the remaining face

is an important step in facial feature extraction. After this ste?, . gid F didate f on. &L i
facial features such as eyes, nose and mouth can be obta &N cana ates. For a candidate face region, ig.,its

by using suitable geometric constraints. To proceed, we definIghted centroids defined as

a “rectangular box,” as shown in Fig. 8 for each obtained skin oIl
. . . _ ZIGR_ (=)
color region. Since the human face should have an aspect ratio X! = W
within a narrow range, we first apply agpect ratio filterto re- mek; (27)
ject the skin color regions that are unlikely to be face candidates. Vi— Zyeaj ul(@y)
Precisely, thisaspect ratio\ of a region can be defined as ¢ Zyeﬂj I(z.y)
| Xigit — Xiert| whereI(xz,y) is the luminance value of the pixel at,@). In

A (25)

" Yaown — Yiop| addition to this weighted centroid that gives the position of the
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%

SESESESE
. idl J ' (L 1]

Fig. 10. Face detection results for “Foreman”: original images versus face detection results.

in

face candidate region, tharientationé of the face candidate
region is defined by an axis that has the lowest moment of r
tation. This moment axis is also the line from which the sum ¢
squares of distance from individual pixels is the minimum an
its angle® can be computed as

= Ltan~1 | 2Hni_
2 12,0 —H0,2

left{

— — XN\P(y — YV
NP:(I - Z(J},y)ERj (‘T Xc) (y Y;) I(‘Tvy) (28) s Id] m Wi

Whereupz(l I,ndlcates the](z Q)th Ord(_ar central mome_nt for_the Fig. 11. Face detection results for “Akiyo”: original images versus face
corresponding face candidate regiin. Once the orientation detection results.
and centroid of a face candidate are knownrriggorandminor

diametersand their lengths can also be determined automati-

cally as shown in Fig. 8 . The ellipse shape model for face can- |—_|

didate Z; can then be generated as

+

= 2
ani an J ( 9)

e,

$/2 y/2 B C
2

whereR,,,; andRR,,,; indicate the length of the major and minor
diameters, respectivelg, represents the “circumference” of the

ellipse, and
Fig. 12. Region constraint graph for human being object; the extracted human
7 cosf sind r — XJ face is taken as the region seed.
= (30)
Yy —sinf  cosf y — YJ E;  boundary points on the candidate face region

B;  boundary points on the generated ellipse model.
where (¢, v7) denotes the principal axis coordinates of the ellipsehe ellipse shape filtethen rejects those candidate regions for
shape model. The relationships among the weighted centroidhich the computed Hausdorff distance exceeds a specified
orientationd, rectangular box and the major and minor axes atereshold, e.g.f"
given in Fig. 8 . After the ellipse model for a candidate face

region has been generated, the Hausdorff distance £B86], ), H(B;,E;) > F, R;isnonface
can be used for measuring the similarity between the ellipse - 32)
model and the corresponding face candidate H(B;,E;) < F, R;isface.

H(Bj, E;) = max(h(B;, E;), h(E;, By)) Since the face region may be partially covered by the hair, etc,

h(B;, E;) = Inax 521151 |6 — el (31) the boundary of the detected face region may deviate signifi-
WE;, B;) = ma;( iniri lle — b cantly.from th_e ideal ellipse model; thu_s thth Hausdorff dis-
I c€E; bEB; tance is used in (31). Moreover, the facial features such as eyes,
mouth, and nose, can further be detected on the basis of their
where geometric constraints. A set of face detection results is given in

||-]] Euclidean norm; Figs. 10 and 11.



FAN et al. IMAGE SEGMENTATION BY INTEGRATING COLOR-EDGE EXTRACTION 1463

Hegion Growing

:

Image Input [ Edge Extraction & ]

Seeded Heglon
Aggregotion

l_{]h}r:-t Ext mu:m] |

'

Fig. 13. Major steps for semantic human object generation.

ok

Fig. 14. Segmentation results of “Akiyo.” Frame 249: (a) original image, (b) the obtained color edges, (c) the obtained luminance edges, (dethe obtai
chrominance edges, (e) the obtained region boundaries, (f) the obtained human face, (g) the generated seeded semantic human being, artdqigeimantitrac
object. Frame 299: (i) original image, (j) the obtained color edges, (k) the obtained luminance edges, (I) the obtained chrominance edgesaifra} tregmist
boundaries, (n) the generated seeded semantic human being, and (0) the extracted semantic object.

D. Human Object Generation The selected object seed should represent the distinguishing
It is impossible to design a universal semantic object gefaracter of the corresponding semantic object. The region con-
eration technique which can provide variant semantic obje@&&int graph can guide how the connected regions of the object
using the same function. However, semantic object generatifffd should be put together for generating that object. The se-
for content-based image database applications is possible rpantic objectge_neratlon function f|rsttr|_es to identify the object
cause the database images can be indexed by selected sem$fi@ from obtained homogeneous regions. It then matches the
objects of common interest to human users, such as human 580N constraint graph with the minimum spanning tree (deter-
ings, cars and airplanes. This interest-based image indexing &§1€d by the image segmentation procedure) of the detected ob-
proach is reasonable because users do not pay equal attedfi6hs€ed- If the object seed is detected and the corresponding re-
to all the objects present in an image. It reduces the difficulti@i®n constraint graph is also in good enough matchisgesled
for automatic semantic object generation—several independ&#/0n aggregatiorprocedure is used for merging the adjacent
functions can be designed, each handling one type of semaf&@ions of the object seed to produce the semantic object.
object. Each function is designed by usingaiiect seecand 0" €xample, Fig. 13 illustrates the major steps in our se-
aregion constraint grapHi.e., perceptual model) of the corre-Mantic human being generation scheme. As shown, the human
sponding semantic object. face is taken as the seed for object generation and the region con-
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Fig. 15. Segmentation results of “Foreman.” Frame 14: (a) original image, (b) the obtained color edges, (c) the obtained luminance edges,itédthe obta
chrominance edges, (e) the obtained region boundaries, (f) the obtained human face, (g) the generated semantic human being. Frame 99:1({make diijgina

the color edges, and (j) the generated semantic object. Frame 149: (k) the original image, (I) the color edges, (m) the luminance edges, (o) fe=edatette

(o) the generated semantic object.

L]

Fig. 16. Segmentation results of “News”: (a) original image, (b) the obtained color edges, (c) the obtained luminance edges, (d) the obtairedeledgeis
(e) the obtained human face for object 1, (f) the obtained human face for object 2, (g) the generated semantic human being for object 1, and (l§dhe genera
semantic human being for object 2.

straint graph (perceptual model) of human beings, as showrsgrve to illustrate the performance of all the techniques pre-
Fig. 12 is used for managing the seeded region aggregation ented in Section Il, lll, and IV . Four images are used, namely
cedure. This perceptual model of human beings can guide htikiyo,” “Foreman,” “News,” and “Mother and Daughter.”
the adjacent regions corresponding to face (or head, takenTagse images are well-known in the image and video coding
object seed), body, arms, legs should be put together. We stadynmunity.
semantic human object generation because it is particularly in+ig. 14(a) shows the original image of “Akiyo,” Fig. 14(b)
teresting in image database applications. Functions for gengives the the color edges obtained by this proposed isotropic
ating cars, airplanes, etc, will be investigated in future work. color-edge detector. Fig. 14(c) is the obtained edges by per-
forming the proposed edge detector only on the luminance com-
ponent Y. Fig. 14(d) is the obtained edges by performing the
proposed edge detector only on the chrominances U and V.
We report a set of experimental results to show the effectivieig. 14(e) is the region boundaries by integrating the results
ness of the proposed algorithms on detecting the color edgefscolor edges and SRG. Notice that the homogeneous regions
homogeneous regions, faces and semantic human objects. igly accurate boundaries are obtained. The filters of skin color,

V. EXPERIMENTAL RESULTS
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Fig. 17. Segmentation results of “Mother and Daughter”: (a) original image, (b) the obtained color edges, (c) the extracted luminance edgetif®dhe o
region boundaries, (e) the obtained human face for “Mother” object, (f) the obtained human face for “Daughter” object, (g) the generated searab&mgum
for “Daughter” object, and (h) the generated semantic human being for “Mother” object.

aspect ratio, skin area ratio and ellipse shape are used to dgs]
tect the homogeneous regions that can be taken as human faces
Fig. 14(f) is the human face obtained by the proposed face dem
tection technique in Section IV. Fig. 14(g) is the corresponding
seeded semantic human object. Fig. 14(h) is the detected Sefé]
mantic object. Similar results for another frame of the “Akiyo”
video are also given in Fig. 14 . In addition, Figs. 15-17 show [9]
results for “Foreman,” “News,” and “Mother and Daughter,” re- (10]
spectively.

[11]

VI. CONCLUSION

. . . . [12]
A new automatic image segmentation algorithm is proposed
in this paper. The color edges are first obtained by an improved
isotropic color-edge detector and the centroids between tHaS!
adjacent edge regions are taken as the initial seeds for region
growing. Moreover, the results of color-edge extraction and14]
SRG are integrated to provide more accurate segmentatiqps]
of images. Application of the proposed image segmentation
algorithm to automatic face detection is also discussed. Mord16]
over, a novel semantic object generation scheme is propos?fj]]
using a seeded region aggregation procedure. By including a
temporal tracking procedure [38], semantideo objects can
also be supported. Such a semantic object generation schela
should be very attractive for content-based multimedia database
applications. [19]
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